
AD-13tS6 629 METHODOLOGY INVESTIGATION PROGRAM FLOW ANALYZER VOLUME 1/2
2(U) ARMY ELECTRONIC PROVING GROUND FORT HUACHUCA AZ
E L ANDERSON SEP 05

UNCLASSIFIED F/G 9/2 ML

mhmhhhhhhhhhhu
smmhhhhhmhhhl
mhhhhhhhhhhhhl

la .8

L- IQ

N IN65 a * .o

112 1 .

MICROW"P RESOLUTN TE$T Ct4mt
'
1

-IWA- "Il IW E - TANWOMI*lqsj.A

a)
N UNCLASSIFIED
C

U)- AD No.
(0 TECOM Project No. 7-CO-PB4-EPI-001

METHODOLOGY INVESTIGATION

FINAL REPORT

PROGRAM FLOW ANALYZER

VOLUME II

BY

EDWARD L. ANDERSON

US ARMY ELECTRONIC PROVING GROUND
Fort Huachuca, Arizona 85613-7110

SEPTEMBER 1985

DISTRIBUTION UNLIMITED

US ARMY TEST & EVALUATION COMMAND
Aberdeen Proving Ground, MD 21005-5055

UNCL 0" IFIA

s 082

Document Numb1.r: 1;M-C*' - 05

July 1985

ACAPI
TABLE-DRIVEN

ASSEMBLY LANGUAGE CODE ANALYSIS PROGRAM

TECHNICAL USER MAN4UAL

w'-P

U.S. ARMY ELECTRONIC PROVING GROUND ~ _-

rV1,0~ A].- -

,o~ /

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1
1.1 PURPOSE .*. . 1
1.2 SCOPE . . .#. ... * 1

1.3 DESCRIPTION . 1

2.0 ACAP USAGE * . . .*.* ..e. . . .*. . 3
2.1 DISPLAY ACAP CAPABILITIES 3

2.2 INSTRUMENT SOURCE CODE 4

2.2.1 Select Raw Source Code to be Instrumented 5
2.2.2 Define Instrument/Construct 5
2.2.3 Instrument 6

2.2.4 Edit Instrumented Source File 7
2.3 SOFTWARE ASSESSMENT 7

2.3.1 Select Instrumented Source Code to be

Processed by ACAP a

2.3.2 Process Code and Create Master File . . . 9

2.4 REPORT WITER 9
2.4.1 Module Report 11
2.4.2 Sumary and Compliance Reports 11

2.4.3 Software Quality Metrics Report 20
2.4.4 Calls Report 20

2.4.5 Path Report 20

2.4.6 Undefined Externals Report 21

2.4.7 Variable Usage Report 21
2.4.8 Sequenced/Paginated Listing 21

2.4.9 Macro Usage Report 21
2.5 VIEW AND PRINT 21
2.6 NEW LANGUAGE 23

2.6.1 Set-Up Parser Tables 23

. g lll ll -

TABLE OF CONTENTS (Continued)

Page

2.6.2 Select Parser 23
2.6.3 Run Code Translator 24

2.6.4 Run Static Analyzer 24

2.6.5 Create Master File . . . * 24
2.7 HELP o.a.....o....o oe... 9 o 24

2.8 TERMINATE ACAP AND EXIT TO VMS 25

3.0 THE ACAP SYSTEM o o o o o o 26

3.1 ACAP INPUT PROCESSOR 26
3.1.1 Inputs o.. 28

3.1.2 Processing 28

3.1o3 Outputs 0 28

3.2 ACAP CODE TRANSLATOR * * * a a e o * o . . * e . e & 28
3.2.1 Inputs 28

3o2.2 Processing . . . o o . . . 29

3.2.3 Outputs 0 0 0 . . 29
3.3 ACAP STATIC ANALZER o * . . e * a * e 9 o e e * o o 30

3.3.2 Processing . o . o o 31

3.3o3 Outputs 32
3.4 ACAP REPORT MITER * o 32

3.4.1 Inputs 33
3.4.2 Processing 33
3.4.3 Outputs 34

4.0 ACAPPROGRAMDESCRIPTIO

5.0 ACAP DATAFILE DESCRIPTIONS 4

6.0 SAMPLE REPORTS , . . 51

-.

TABLE OF CONTENTS (Continued)

Page

APPENDIX A MASTER FILE DESCRIPTION 52

A.1 NAMELST - DIRECT / 52

A.2 MASTER FILE FORMAT. 53

A.3 NAMELIST GROUP DESCRIPTIONS 54

APPENDIX B SOURCE CODE INSTRUMENTATION 63

5.1 PROCEDURE INSTRUMENTATION 64

B.2 ABSTRACT. .9. 65

8.3 SKIP e o o . o * o * o o * e o e a o o e o 65

APPENDIX C MODIFICATIONS NECESSARY TO ADD A LANGUAGE TO ACAP . 66

C.1 DEVELOPMENT OF NEW SOFTWARE- ROUTINES ... 66
C.2 MODIFICATION OF EXISTING SOFTWARE ROUTINES 67

APPENDIX O ACAP LANGUAGE CAPABILITIES. 68

0Ol 6800 . 9 9 9 9 a 0 9 9 9 68
Do2 N68000 e * 74

D.3 SKC 83

0.4 PPl 93

.11

TABLE OF CONTENTS (Continued)

Page

LIST OF FIGURES

2-1 ACAP MAIN MENU 3

2-2 ACAP INTROOUCTION MENU 4
2-3 INSTRUMENT CODE MENU . 4

2-4 ACAP ASSEMBLY LANGUAGES 7
2-5 SOFTWARE ASSESSMENT MENU 8

2-6 ACAP REPORT GENERATION MENU 10
2-7 METRIC SELECTION 12
2.-8 NEW ANGUAGE MENU 23
2-9 VIE/PRINT REPORT MENU 22

3-1 THE STRUCTURE OF THE ACAP SYSTEM 27
3-2 INPUT PROCESSOR 26
3-3 CODE TRANSLATOR o....e e * . . 29

3-4 STATIC ANALZER .. 32
3-5 REPORT MITERe. 35
4-1 STRUCTURE CHART CONSTRUCTS 46
4-2 ACAP STRUCTURE CHART 47

LIST OF TABLES

4-1 AAP PROAM FILES a a o e a e 37
4-2 LINK SEQUENCE FOR ACAP PROGRAMS 45
0-1 6800 PARSER TABLE * & • • . 71

0-2 M6000 PARSER TABLE . 77
0-3 SKC PARSER TABLE . 86
D-4 POP11 PARSER TABLE 96

-lV-

/

1.0 INTRODUCTION

1.1 PURPOSE

. The table-driven Assembly Code Analysis Program (ACAP) is one

component in a family of automated software assessment tools. These tools
extract information about software quality features of the target software
being examined. ACAP provides a translator which can be modified to tailor it

to the specific assembly language of the target software. Provision is also

made in the ACAP system for generating reports from information collected by
other language translators.\

1.2 SCOPE

This document i intended to be an informal technical user manual to

aid the analyst perfo ing the software assessment. It is assumed that the

user is familia with the host computer system (VAX/VMS) utilities,

particularly - e EDT editor, and the FORTRAN language. An understanding of

static Software assessment techniques, computer languages, and the target

systqM software is essential.

1.3 DESCRIPTION

i The ACAP system has been developed on the Digital Equipment VAX

series of computers utilizing VMS. The ACAP is written entirely in VAX/DCL
and FORTRAN. The table driven ACAP system accepts input defining the

mnemonics of the assembler language to be analyzed. Depending on the

particular language, the statement parser may need modification and subsequent

linkage within the code translation section of ACAP. ACAP determines

information about the structure, complexity, use of instructions and

variables, and selected quality parameters.

A general purpose report writer interfaces with ACAP and other code
analysis programs. Data generated by these programs are provided via files to
the Report Writer. These files supply the data that creates the software
assesstrnt reports, and in addition, are concatenated into a single master
f le". -

---- .. . r I I I II I II

The ACAP system also provides the capability to create a paginated,

sequenced listing to assist in software assessment activities.
f

The -4194ing--seette describe ^the usage of ACAP, define the

interfaces among each of the subsystems, describe the files used within ACAP,

and illustrate each of the reports created.

.4,'

'4t

J-

2.0 ACAP USAGE

The ACAP program is run by typing "@ACAP. A main menu (Figure 2-1)
is then displayed. The main menu is a list of actions/functions available to
the user. Each of the selections on the main menu is described in the

following sections. Every menu of ACAP has a help file which explains the

usage and content of the menu.

ACAP MAIN MENU

DISPLAY Display ACAP Capabilities 1

INSTRUMENT CODE Instrument Source Code 2
S/W ASSESSMENT Perform Software Assessment 3

REPORT WRITER Run ACAP Report Writer 4

VIEW/PRINT View/Print Reports 5

NEW LANGUAGE Create New Language Capability 6
HELP Display Helpful Information H
EXIT TO VMS Terminate ACAP and Exit to VMS E

What would you care to do now?:

FIGURE 2-1 - ACAP MAIN MENU

2.1 DISPLAY ACAP CAPABILITIES

This selection assists the user in understanding the capabilities of

ACAP. The user Is presented with the menu shown in Figure 2-2 from which to

select the information to be displayed.

-3,

ACAP INTRODUCTION MENU

I - Overview

2 - System Flow

3 - Languages Currently available

for software assesment.

E - Exit to ACAP Main Menu

What would you care to do now?

FIGURE 2-2 - ACAP INTRODUCTION MENU

k.2 INSTRUMENT SOURCE CODE

This selection assists the user in instrumenting source code files

for subsequent processing by ACAP. Instrumentation is necessary since there
are inconsistencies in describing how or where a procedure might begin and is

accomplished by inserting a line of information into the source file to define
segments of code for ACAP to assess and generate reports. This eliminates

ambiguities and assures that the code is processed consistently for static

analysis. Instrumented lines are not regarded as source by ACAP. This is

explained further in Appendix B. The Instrument Code Menu is shown in Figure

2-3. A description of each of the numbered selections in this menu is

presented in the following paragraphs:

INSTRUMENT CODE

1 - Select raw source code

to be instrumented.
2 - Define instrument/construct.

3 - Instrument
4 - Edit instrumented source code.

H - Display helpful information.

E - Exit to ACAP Main Menu.

What would you care to do now?

FIGURE 2-3 - INSTRUMENT CODE MENU

-4-

2.2.1 Select Raw Source Code to be Instrumented

This se-lection queries the user for the name of the source file to be
instrumented. The name must be a legal VMS file name including extension.
The specified file name becomes the input file name used by menu item 3.

The specified file may reside in another directory in which case the

Directory Path should be entered with the File Name. If this approach is used

the user should be certain they have appropriate access to the specified

directory. (Note: The combined Directory Path and File Name ccnnot exceed 31
characters.)

2.2.2 Define Instrument/Construct

This selection allows the user to define the constructs to be used in

the source code instrumentation. Upon selection of this menu item, the user
is placed into the VAX editor with a template of a namelist file displayed for

editing. After editing, this file is used to assist in instrumenting the
source code when the user selects menu item 3.

The template file IRM.MTL contains comments to assist the user in
understanding the instrumentation process. Below is the contents of this file.

9:

V,

aa

SIRN

The instrument value is the string which the code translator recognizes as the

start of a piece of Instrumentation. It should not be recognizable by the

compiler, and it has a maximum length of 15 characters. An example instrument

value is "C**.

INSTRUMENTVALUE - ',

Code constructs are pieces of source code which hint at the correct place to

put instrumentation. For example in FORTRAN, PROGRAM is a likely place for

the start of either a module or a procedure. SUBROUTINE is a likely place for

the start of a procedure. The program which aids in the instrumentation

process searches for the code constructs and inserts a line containing the

INSTRUMENT-VALUE in front of the line on which the code construct was found.
-. If CODE CONSTRUCT(N) is given the value ' , it will be ignored.

CODECONSTRUCT1 ' "

CODE CONSTRUCT2 , S

CODE CONSTRUCT3 ' S

-" SEND

The user is expected to edit the values as appropriate and then exit
from the editor in the normal manner which returns control to ACAP.

2.2.3 Instrument

This selection assists the user in doing the actual source code

instrumentation. The user is prompted to specify the output file nme by the

query 'WHAT WOULD YOU LIKE TO CALL THE INSTRUMENTED SOURCE?'. The name must
be a legal VMS file name including extension. No Directory Path should be

entered here, the file must reside in the default directory. After the output

file name is entered, the input file specified using menu item 1 is opened,

and each line in the source file is searched for the character strings

specified as CODE CONSTRUCTS above. If a CODECONSTRUCT is found, a single
line containing the INSTRU14ENT.VALUE is written to the output file followed by

-6.-

"I.''

the line of source; otherwise, just the source line is written to the output

file.

2.2.4 Edit Instrumented Source File

This selection allows the user to complete the instrumentation
.40

* process started above. The user is placed Into the VAX editor in order to

edit-the file output above. The user is expected to utilize the search

function of the editor to locate the automatically instrumented lines

containing the INSTRUMENT VALUE and complete each of these lines as explained

in Appendix B of this document. Exiting from the editor in the normal manner

returns control to ACAP.

2.3 SOFTWARE ASSESSMENT

Selecting this item allows the user to perform software assessment on

an instrumented source program. The menu shown in Figure 2-4 is displayed to
the user from which the user is required to select the appropriate language.

- A C A P - SOFTWARE ASSESSMENT

ASSEMBLY LANGUAGE CAPABILITIES

1 - 6800 6- 11-

2 - M68000 7- 12-

3 - SKC 8- 13-

4 - PDP11 9- 14-

5 - 10 15-

If the Language you want is not available, Press RETURN key.

Please Select Assembly Language for ACAP S/W Assessment

FIGURE 2-4 - ACAP ASSEMBLY LANGUAGES

A message is displayed if the language is not currently available.

A description of each of the numbered selections on this menu is

presented in the following paragraphs. After selection of a language the menu

shown in figure 2.5 is displayed:

SOFTWARE ASSESSMENT MENU

1 - Select Instrumented Source Code
to be Processed by ACAP

2 - Process Code and Create Master File

H - Display Helpful Information

E - Exit to ACAP Main Menu

What would you care to do now?

FIGURE 2-5 - SOFTWARE ASSESSMENT MENU

2.3.1 Select Instrumented Source Code to be Processed by ACAP

This selection queries the user for the file name of the instrumented

source code as follows:

Select the Instrumented Source Code

Enter the Filename

(Note: The file must reside in the default directory.):

Enter the Name of the Program in That File

(Must be a Legal VMS Filename Without Extension):

The Filename is used to locate the instrumented source which must

reside in the default directory. A blank response to this Inquiry is not

allowed and will cause the prompt to reoccur.

The program name is used to name report files output by the Rport

Writer.

*8..

The user is then queried for the classification of the program source

as follows:

Legal Classifications
VU - Unclassified ,
'C' a Confidential

'S' - Secret am
'T' - Top Secret |

Classification of this program:

If the user enters something other than one of the legal

classifications, the message "That is not a legal classification. Please try

again." will be displayed.

2.3.2 Process Code and Create Master File

This selection processes the instrumented source code in the file
specified by menu item 2 through the Code Translator and the Static Analyzer

automatically generating all the data necessary for all the reports. After

completion of the translation and static analysts, the user is prompted to
enter a name for a Master File to contain all the output data for the reports.
It is recommended that the Master File name has an extension, such as MAS,
that follows a user-defined convention to allow-easy identification of Master

Files.

2.4 REPORT WRITER

This selection allows the user to select specific ACAP reports to be

generated. The user is first asked *WHAT IS THE NAME OF THE MASTER FILE?:.

The name must be a legal VMS file name including extension. After specifying
the file name, the menu shown in Figure 2-6 is displayed to the user.

,'9.

CREATE REPORTS

1. Module Report
2. Summary and Compliance Reports
3. Software Quality Metrics Report
4. Calls Report
5. Structure Diagrams
6. Undefined Externals Report
7. Variable Usage Report
8. Sequenced/Paginated Listing
9. Macro Usage Report

Select the reports to generate (e - quit, h . help, r - run):

FIGURE 2-6 - ACAP REPORT GENERATION MENU

To select a report, the user types the report number, as shown on the
menu, followed by a RETURN. The selected report title is then highlighted

using inverse video. Once selected, a report can be deselected by again
typing the report number followed by a RETURN and the report title will no

longer be high lighted. Any number of reports can be selected for generation.

After the user has selected all the reports he desires, the user

types 'R <RETURN>' to have the reports run.

To obtain help, the user types 'H <RETURN>'.

To exit report generation and return to the main menu, the user types

'E <RETURN>'.

A sample of all the reports is included in Section 6. Note that the

information in the reports depends on the information in the master file. Not

all data will or can be extracted by the Code Translator/Static Analyzer for

all languages. For information on the metrics that are being extracted for a

particular language, see the appropriate appendix.

-10-

2.4.1 Module Report

The Module Report (in a file named "Programname.MOD") lists the
module names, the number of procedures in each module, the procedure names and

the page number of the procedure in the sequenced paginated listing.

2.4.2 Sumiary and Compliance Reports

The Summary and Compliance Reports (in a file named
"Programname.CPL) indicate the degree of compliance that the software being

analyzed has with selected metrics. The Summary Report lists the number of

compliant and non-compliant procedures, the percent of compliant and
non-compliant procedures, the total value, and the average value for each

metric. The Compliance Report consists of two tables. The first is the
Numerical Compliance Table which lists the value of each metric for each

procedure. The second is the Compliance Table which indicates whether each
procedure is compliant with the compliance values.

After selection, the following question is displayed to the user:

WOULD YOU LIKE TO CHANGE THE COMPLIANCE VALUES? If the user enters 'Y', he
will be able to change compliance values as discussed in Section 2.4.2.1;
otherwise, the user is prompted to select the metrics for the Sumary and
Compliance Reports using the menu shown in Figure 2-7.

-11-

o t

Select the metrics for the summary report.

1. Number of Lines in the 15. Number of Multi-Statement Lines
Abstract 16. Number of Entry Points

2. Number of Comment Lines 17. Number of Exit Points
3. Number of Executable Lines 18. Number of Forward Branches
4. Number of Non-Executable 19. Number of Backward Branches

Lines 20. Number of Branches out of Routine
5. Number of Lines 21. Number of Conditional Branches
6. Number of Comments for Exec 22. Number of Unconditional Branches

Lines 23. Number of Nodes
7. Number of Comments for 24. Number of Paths

Non-Exec Lines 25. McCabe's Cyclomatic
8. Number of In Line Comments 26. Number of Lines Skipped
9. % of Executable Lines 27. Number of Includes

Commented 28. Number of Unique Operators
10. % of Non-Executable Lines 29. Number of Operators Used

Commented 30. Number of Unique Operands
11. Maximum Consecutive Lines 31. Number of Operands Used

W/O Comm 32. Lines of Code (Primary Language)
12. Number of Executable 33. Lines of Code (Embedded Language)

Statements 34. Primary vs. Embedded Language
13. Number of Non-Executable Switches

Statements 35. Number of Variables in a Procedure
14. Number of Multi-Line

Statements
Which metric would you like in the report (e - exit, h - help):

FIGURE 2-7 - METRIC SELECTION

To select a metric, the user types the metric number, is shown on the

menu, followed by a RETURN. The selected metric is then highlighted using

inverse video. Once selected a metric can be deselected by again typing the

metric number followed by a RETURN. Only ten (10) metrics may be selected at

a time. Error messages will appear if the selection of an eleventh metric Is

attempted or if an attempt is made to select a metric which has been

determined to be invalid for the selected language.

To obtain help, the user types 'H <RETURN>'.

To terminate selection of the metrics and return to the main menu,

the user types 'E <RETURN>'.

-12-

2.4.2.1 Changing Compliance Values

The user is placed in the EDT editor in keypad mode and allowed to

edit the REPORT.NML file. This is a Namelist file used in creating the

Compliance and Summary Reports. The following is displayed to assist the user

in the editing process:

$SUNI REPCONFIG

IHow to Change the Wording of the Report Headings and the Compliance Values
I

!The report heading for each metric consists of the two lines: COL HD LN1

land COL HD LN2. To change the heading find the array entry which corresponds
Ito the desired metric, and edit the headings. Do not change the total number

!of characters or the report will not look right.

!The compliance value is stored in COMPLY VAL. To change the numerical value

!find the correct array entry and change it.

!The LT GT FLAG is tested to determine if the value of the metric must be <=

!or >a the compliance value. If LTGTFLAG is given a value of T or TRUE,

!then the metric must be greater than or equal to the compliance value. If
!it is given a value of F or FALSE then the metric must be less than or equal
Ito the compliance value.

IThe totals of some of the metrics are given in the sumary report. If the

Ivariable SHOW TOTAL is TRUE then the total is showi. If it is FALSE then the
* Itotal is not shown.

I! Please look for the appropriate entries below:

I Number of lines in the abstract
COL HD LN1(1) - 'ABSTRACTI',

COL HO LN2(1) - 'LINES '
COMPLY VAL(1) - 3,

LTGTFLAG(1) - T,
SHOW TOTAL(1) - To

-13-

Number of comment lines

COLHDLN1(2) - 6COrvENT ~
COLHDLN2(2) -* LINES '

COMPLYVAL(2) - 100,

LTGTFLAG(2) - F,

SHOW TOTAL(2) - T
! Number of executable lines

COL HD-LN1(3) a EXECU ,

COLHDLN2(3) - LINES '

COMPLY VAL(3) - 100,
LTSTFLAG(3) - F,

SHOWTOTAL(3) - T

!Number of non-executable lines

COLHOLN1(4) a -NON-EXECIa,,

COL HD LN2(4) -* LINES '

COMPLYVAL(4) - 100,
LTSTFLAG(4) - F,

SHOW TOTAL(4) a T

I Total number of lines

COLHOLIi(S) -* TOTAL 1

COL._HDLN2(5) a 'LINES P

COMPLY VAL(5 a 100,

LT ST FLAG(S) a F,

SHOW TOTAL(S) a T

! Number of co mme nts in exec. stints.
COLHOLN1(6) * 'COMMENTS11

COL HD LN2(6) a '(EXECU.)I,.

COMPLY VAL(6) - 200,
LTSTFLAG(6) - F,

SHOWTOTAL(6) * T,

I Number of comm. in non-exec. stints.
COL HOLN1(7) - 'COMMENTSI',
COL HO LN2(7) - 6(NON-EX)I't

COMPLY VAL(7) - 5O,
LT GTFLAG(7) - T

SHOW TOTAL(7 a T

Number of inline coments

COL_HDLNI(8)- 'IN-LINE I',
COLHDLN2(8) - 'COMMENTSI',

COMPLY VAL(8) - 100,

LT GT_FLAG(8) - F,

SHOW TOTAL(8) - T,

.% of executable line commented

COL HO LNI(9) - '% COMM. I'

COL HD LN2(9) - ' EXEC. '•

COMPLY VAL(9) - 100,

LT GTFLAG(9) - T,

SHOW TOTAL(9) - F,

% __of non-executable line commented

COL _HoLNl(10) - '% COMM. I'

COL HO LN2(1O) - ' NON-EX '

COMPLYVAL(1O) - 100,

LT GT FLAG(1O) - T,

SHOW TOTAL(10) - F,

I Number of consecutive lines w/o comm.

COL HO LN1(11) - 'MAX W/O '

COL_HO_LN2(1l) - 'COMMENT !'.
COMPLY VAL(11) - 4,

LTGT FLAG(11) - F,

SHOW TOTAL(11) - F,

I Number of executable statements

COL HO LNI(12) - ' EXECU.)'

COL HO LN2(12) - ' SThTS. I'

COMPLY VAL(12) - 100,

LT GT FLAG(12) - F,

SHOW TOTAL(12) - T,

I Number of non-executable statements

COL HO LN1(13) - ' NON-EX j'
COL HD LN2(13) a ' SThTS. '
COMPLYVAL(13) - 50,

LTGTFLAG(13) - F,

SHOW TOTAL(13) a T,i -46-

'

Number of multi-line statements .
COL HOLN1(14) - 'MLT-LINEI',
COL HDLN2(14) = - SlMTS. I'

COMPLYVAL(14) - 0,

LTGT FLAG(14) - F,

NSHOW TOTAL(14) - T,

I Number of multi-statement lines

COLHOLN1(15) a 'MLT-STMTI',

COL HO LN2(15) - - LINES I'
COMPLY VAL(15) - 0,

LT GT FLAG(15) - F

SHOW TOTAL(15) - T,

I Number of entry points

" COL HO LN1(16) = ' ENTRY P.
COL HD LN2(16) - 'POINTS I'.
COMPLYVAL(16) - 1,

LT_ TFLAG(16) - F,

SHOW TOTAL(16) - T,

I Number of exit points

COL_HO_LN1(17) - 'EXIT I',
COL HD LN2(17) = - POINTS I',

COMPLYVAL(17) = 1,

LT_GTFLAG(17) a F,

SHOWTOTAL(17) - T,

I Number of forward branches

COL _H LN1(18) - 'FORWARD I',
COL HD LN2(18) - 'BRANCHESI',

COMPLYVAL(10) - O,

LTGTFLAG(18) - F,

SHOW TOTAL(18) -T,-

j I Number of backward branches

COL HD LN1(19) a 'BACKWARDJ',
COL HDLN2(19) a 'BRANCHESI',

COMPLY-VAL(19) o,

LTGTFLAG(19) - T,

SHOW TOTAL(19) a T.
-16-

Number of branches out of routine

COL HDLN1(20) - 'OUTWARD I'
COLHD_LN2(20) a BRANCHESI',

COMPLYVAL(20) - 0,

LTGTFLA(20) - F,

SHOW TOTAL(20) - T,

Number of conditional branches

COL HD LN1(21) - ' COND. 1'

COLHOLN2(21) - 'BRANCHESI*,

COMPLYVAL(21) - 0,

LTGTFLAG(21) - F,

SHOWTOTAL(21) - T,

! Number of unconditional branches

COL HD LN1(22) a UNCOND. If

COL HD LN2(22) - BRANCHES

COMPLYVAL(22) - 0,

LTGTFLAG(22) - F,

SHOWTOTAL(22) - T,

I Number of nodes

COLHDLN1(23)-a NODES I',
COLHDLN2(23) - I',

COMPLY VAL(23) - 0,

LT GTFLA(23) - F,

SHOW TOTAL(23) - T,

! Number of paths

COL HO LN1(24) - PATHS P.

COL HD LN2(24) a I'
COMPLYVAL(24) - 0,
LTGTFLA(24) - F,

SHOW TOTAL(24) - T,

I McCabe's cyclomatlc
COL HO LN(25) - 'McCABES P.

COLHDLN2(25) a 'COMPLEX.',

COMPLY VAL(25) - 10,

LTGTFLAG(25) - F,
SHOW TOTAL(25) - F,

-17,,

Number of lines skipped

COL_HDLN1(26) - LINES I',
COLHDLN2(26) a 'SKIPPEDI,

COMPLY VAL(26) a 0,

LTGTFLAG(26) - F,

SHOW TOTAL(26) a T,

I Number of includes ES

COL..HDLN1(27) - INCLUDESI',

COLHDLN2(27) - I',
COMPLYVAL(27) - 0,

LT..GT..FLAG(27) - F,

SHOW TOTAL(27) - T,

! Number of unique operators

COL HD LN1(28) - I UNIQUE '

COL HD LN2(28) - 'OPERAT. I'

COMPLYVAL(28) a 0,
LTGTFLAG(28) - F,

SHOWTOTAL(28) - T,

1 Number of operators used

COL HO LN1(29) - 'OPERAT. ',

COL HDLN2(29) - - USED 1',

COMPLY VAL(29) - 0,
LTGT_ FLAG(29) F,
SHOW TOTAL(29) - T,

! Number of unique operands

COL HD LNI(30) - ' UNIQUE ',

COL HO LN2(30) - 'OPERANDSI',

COMPLY VAL(30) a 0,

LTGTFLAG(30) - F,
,SHOWTOTAL (30) - To

SOL(0Number of operands used

COL HD LN1(31) - OPERANDS I',

COL HD LN2(31) - USED)

COMPLY VAL(31) - 0,

LTGTFLAG(31) a F,

SHOW TOTAL(31) T,
4.8-

Number of lines of primary code

* COLHOLtNl(32) =-'LINES OFt',

COL NOLN2(32) - 'PRIMARY j TA

COIPLY-VAL(32) - 0,
LTGTFLAG(32) - F,

SHOWTOTAL(32) *T,

INumber of lines of embedded code

COLHOLNl(33) - 'LINES OFI', I

COLHOLN2(33) - 'EMBEDDEDI'

COMPLY VAL(33) - 0,
LTGTFLAG(33) - F,

*SHOWTOTAL(33) - T,

!Number of switches: Primary vs. Embedded

* COL-HD-LN1(34) - 'SWITCHES '

COLHOLN2(34) * 'PRI/EMBD '
COtPLY-VAL(34) * 0,

LTGTFLAG(34) - F,

SHOWTOTAL(34) - T,

* ! Number of variables ih a procedure

COL HO LN1(35) - 'NUN. OF '

COL HD LN2(35) * ' VARS. '

COMPLY -VAL(35) - 50,

LTGTFLAG(35) * F,

SHOWTOTAL(35) - T

!The rest are not used.

COLHOLN1(36) * -'

COLHDLN2(36) - 'P,'

COMPLY VAL(36) - 0,

LT GTFLAG(36) - F,

SHOW TOTAL(36) * Ts

49-

-Fr - -": :. - ' - L - - = -" i% % - % I. *- -.---. " . _. "*-~<- -. l. % ,..t-. _k .

COLHD LN1(50) '

COL HDLN2(50) - ' I,
COMPLYVAL(50) - 0,

LT_GTFLAG(50) - F,

SHOWTOTAL(50) - T,

YES - ' YES I',
NO -' NO

BLANK ' ',

$END

Exiting from the editor in the normal manner returns control to ACAP.

The user will then be able to select the metrics for the Summary and

Compliance Reports as discussed previously.

2.4.3 Software Quality Metrics Report

The Software Quality Metrics Report (in file name

"Programname.SQt4") itemizes all of the metrics listed in Figure 2-7 for each

procedure. Not all metrics can be collected for all languages. If a metric

has been determined to be "not applicable" for a given language an entry is

made, by the user, in the "INIT MET" Namelist which resides in the Parser
Table. (See Appendix D.) The entry is given a value of -1 and the metric

will not be processed further. UN/A" for "not applicable" will be printed on

the report.

S2.4.4 Calls Report

The Calls Report (in a file named "Programuname.CAL") lists all the
internal calls from each procedure within a module.

2.4.5 Structure Diagrams

The Structure Diagrams (in a file named "Program.name.STR") are

generated for each procedure showing up to fourteen (14) levels of procedure

; calls.

-20-

* -

l

2.4.6 Undefined Externals Report

The Undefined Externals Report (in a file named "Program name.EXT")

lists all the unresolved external references in each procedure.

2.4.7 Variable Usage Report

Variable Usage Reports (in a file named "Programname.VUR") are

generated for both local and global variables. For global variables, the
report lists each global variable, the variable type (If applicable), the
procedures in which it appears, and the number of times it is modified,

referenced, tested, defined, or passed as an argument in the procedure. For

each procedure, the report lists all variables, whether they are local, global
or passed to the procedure as arguments, their variable type, and the number

of times they are modified, referenced, tested, defined or passed as an

argument in the procedure.

2.4.8 Sequenced/Paginated Listing

A Sequential Listing (in a file named "Program name.LST") is

generated for each procedure numbering each source line and printing a page
number on each page. These page numbers are referenced on the Module Report.

2.4.9 Macro Usage Report

Macro Usage Report (in a file named "Program name".MUR") lists all

Macro Definitions and usage found in the instrumented source.

2.5 VIEW AND PRINT

.This selection allows the user to either view or print reports

generated by the Report Writer. The menu shown in Figure 2-9 is displayed to

the user.

W21-

VIEW/PRINT REPORTS

1. Module Report
2. Summary and Compliance Reports
3. Software Quality Metrics Report
4. Calls Report
5. Structure Diagrams

., 6. Undefined External Report
7. Variable Usage Report
8. Sequenced/Paginated Listing9. Macro Usage Report

Select the reports to view/print (e a exit, h * help,
v-view, p-print):

FIGURE 2-9 - VIEW/PRINT REPORT MENU

To select a report, the user types the report number, as shown on the

menu, followed by a RETURN. The selected report title is then highlighted

using inverse video. Once selected, a report can be deselected by again

typing the report number followed by a RETURN, and the report title will no

longer be highlighted. Any number of reports can be selected.

After selection is complete, the user types 'V (RETURN)' to view the

reports or 'P(RETURN)' to print the reports.

When viewing reports, the user is placed in the VAX editor and so has

all the editor capabilities available for viewing the selected reports. To

aid the user in viewing reports a special function key has been established to

set the screen to 132 character mode. The user simply types 'Gold' 'CTRL W'

and 132 mode will be set. Upon exit the screen will automatically reset to 80

character mode.

Upon completion of the view or print process, the main view and print

menu is displayed to the user for continuation of the selection process. To

obtain help, the user types 'H(RETURN)'. To exit, the user types 'E(RETURN)'.

-22-

11 11 '1' _!IJ 'il 11

2.6 NEW LANGUAGE

This selection allows the user to develop the capability to process

new languages for ACAP and to manually step through the software assessment

process. The menu shown in Figure 2-8 is displayed to the user.

NEW LANGUAGE MENU

1 - Set up Parser Tables
2 - Select instrumented source code

file to be processed.
3 - Run Code Translator
4 - Run Static Analyzer
5 - Create a Master File
H - Display helpful information.
E - Exit to ACAP Main Menu"
What would you care to do now?"

FIGURE 2-8 - NEW LANGUAGE MENU

2.6.1 Set-up Parser Tables

To set-up the parser table, the user is allowed to edit an existing

parser table. (For an example of a Parser Table see Appendix 0.) The user is

placed in the VAX EDT editor in keypad mode and can use normal editing

commands to create the desired new parser table. The following information is

stored in the table:

Variable
" Name Type (Dimension) Description

N ASSM Int 4 Number of assembly language mnemonics.
" ASSM INSTS Char 8 (200) Assembly language mnemonics.

ASSN-CODES Int 4 (200) Code for each mnemonic.
ASSM-MODES Int 4 (200) Address mode for each mnemonic.
ASSMSPECS Int 4 (200) Special information about the

instruction.
N USER Int 4 Number of user-defined instructions.
U3ER INSTS Char 8 (100) User mnemonics.
USER-CODES Int 4 (100) Code for each user instruction.
USER-MODES Int 4 (100) Address mode for each user

instruction.
USER SPECS Int 4 (100) Special information about each user

instruction.

-23-

4,

2.6.2 Select Instrumented Source Code File to be Processed

This selection queries the user for the filename of the instrumented

source code as follows:

Select the Instrumented Source Code

Enter the Filename:

What is the name of the program in that file:

The program name allows different source files to be analyzed for a
given program. ("ProgramName" is used for all report names.)

2.6.3 Run Code Translator

This selection runs the Code Translator. For more information on the

Code Translator, see Section 3.

2.6.4 Run Static Analyzer

This selection runs the Static Analyzer. For more information on the

Static Analyzer, see Section 3.

2.6.5 Create Master File

*" This selection creates one file containing all of the files from the

ACAP run. The user is asked for the name of the Master File, and a check is

made and a warning issued if the file already exists. The Master File is

created from the ACAP output files from the most recently completed ACAP run.

If the user does not specify an extension such as MAS, an extension of NML is

appended to the user-supplied name. The Master File is described in Appendix

A.

2.7 HELP

The user may obtain helpful information in either of two ways:

1. Entering 'H <RETURN>' displays text explaining all selections

available on this menu.

24-

Firs

2. Entering 'H' with ['1' or '2' or ...'E'] <RETURN> displays text

associated only with the specified menu item.

2.8 TERMINATE ACAP AND EXIT TO VMS

This selection terminates ACAP execution and returns the user to the

VMS system.

- -

...

q

A,+

Sl

• ,_=--, -- , - -,,, - " ... I I I II I "-25.

3.0 THE ACAP SYSTEM

The structure of the ACAP system is shown in Figure 3-1. The system

consists of an executive and four functional modules:

e Input Processor

e Code Translator

e Static Analyzer

* Report Writer

The executive functions as an interface to the user of ACAP and as a
controller of the ACAP system modules. These functions are performed by means

of a main menu feature and command procedures. These procedures assist the

user in selecting input files and options for subsequent processing. The
interface between the modules is accomplished using the various data files

shown in the figure. These files consist of either "Namelist" formatted data
or sequential data.

3.1 ACAP INPUT PROCESSOR

The ACAP executive passes control to this module when the user

selects main menu item 2, Instrument Code, as discussed in the previous

section on ACAP usage.

An interface diagram for the Input Processor is shown in Figure 3-2.

Source File INSTRM -- Instrumented Source File
Instrumentati on

File IRM.IHL .,

FIGURE 3-2 - INPUT PROCESSOR

-tog

CA

4j t

La

Li~ U..

U 41

S.. L. I.

41L CA a

ILA

oft -2 7

3.1.1 Input

The Input Processor accepts the following input:

a. Source file - a file containing the assembly language source to

be analyzed.

b. The instrumentation file (IRM.NML).

3.1.2. Processing

The Input Processor performs the function of semi-automatically

instrumenting source files, which is further explained in Appendix B.

The Input Processor consists of the procedures shown in the structure
charts of Section 4.0. INSTRM generates .an instrumented source file by

searching for user-defined constructs and inserting the specified instru-

mentation value, as defined in IRM.NML.

3.1.3 Outputs

The Input Processor generates the following output:

a. Instrumented Source File - a file containing the instrumented

source code.

3.2 ACAP CODE TRANSLATOR

The code translator is entered via main menu item 3, Software

Assessment.

3.2.1 Inputs

The Code Translator accepts the following inputs:

a. Instrumented Source File generated by the Input Processor.

b. PARSER.TBL - A file containing a description of the assembly

language being translated.

-28-

c, Control.NML - A file containing identification information such

, as File Name, Source Language Selected, Date, Time, and Program

Name.

3.2.2 Processing

The ACAP Code Translator consists of the procedures shown In the
structure charts of Section 4. SCANNER reads each line of code from the J Z'

instrumented source file and transforms these lines into a generic view of

each statement which is independent of the specific language being processed.

This generic information consists of codes or "tokens" which describe each

statement including statement labels, label references, directives,

parameters, and comments. The translation is controlled by a file

(PARSER.TBL) containing tabular information about the operators and

instructions of the source program's assembly language. This generic

information is accumulated in a file (TRNSL.FIL) to be evaluated by the Static

Analysis module. This file contains the necessary information about each

procedure of the source code for subsequent static analysis. An interface

diagram for the Code Translator is shown in Figure 3-3 below:

IONTROL.NML
STRNSL.FL

ABSTSQM.NML
SCANSQM. NML

i; ERROR.NNL

CONTROL.NML SCANNER C INSTRM.FILJ
Instrumented Source [COIVIENT.FILJ

File PARSER IPARSER.FIL
PARSER.TBL -STRING.FIL]

" J * Optional
FIGURE 3-3 - CODE TRANSLATOR

3.2.3 Outputs

The Code Translator generates the following outputs:

a. Control File: CONTROL.NML - Scanner adds the Parser TableI" (Namelist PARSERTABLE from file PARSER.TBL) to this file.

-29-

b. Translated Source File: TRNSL.FIL - A file containing the

generic information on the assembly language being analyzed.

c. Abstract File: ABSTSQM.NML - A file containing data on the

occurrence of instrumented abstracts.

d. Procedure File: SCANSQM.NML - A file containing the software

metrics accumulated by the SCANNER for each procedure. See

Section 5 for more information.

e. Error File: ERROR.NML - A file in which errors are accumulated

regarding this analysis.

f. Debug File: INSTRM.FIL - An optional output file which contains

debug information on instrumented lines controlled by

INSTRM PRNT in PARSER TABLE.

g. Debug File: COMMENT.FIL - An optional output file which

contains debug information on comments cohtrolled by

COMMENT PRNT in PARSER TABLE.

pm
h. Debug File: PARSER.FIL - An optional output file which contains

debug information on the parser's output for each line

controlled by PARSERPRNT in PARSERTABLE.

i. Debug File: STRINGS.FIL - An optional output file which

contains debug information on the strings found in each line

controlled by STRINGS PRNT in PARSER TABLE.

3.3 ACAP STATIC ANALYZER

The ACAP executive passes control to this module when the user

selects main menu items 3, Software Assessment.

-30-

3.3.1 Inputs

The Stat-ic Analyzer accepts the following inputs:

a. Control File: CONTROL.NML - A file used to control how the

program is analyzed.
," .1 €

b. Translated Source File: TRNSL.FIL - A file generated by the

Code Translator containing the translated assembly language

source in generic form.

c. Abstract File: ABSTSQM.NML - A file containing data on the

occurrence of instrumented abstracts.

d. Procedure File: SCANSQM.NML - A file generated by SCANNER

containing certain software metrics.

e. Error File: ERROR.NML - A file in which errors are accumulated.

3.3.2 Processing

The Static Analyzer consists of the procedures shown in structure

charts of Section 4. These procedures utilize the TRNSL.FIL created by the

Code Translator to determine information about the software being assessed.

Software quality metrics are calculated by the Static Analyzer as well as path

and variable usage information. The results of this processing are written to

various files that are utilized as input data to the Report Writer. An

interface diagrl for the Static Analyzer is shown in Figure 3-4 below:

-31-

t)p

SQM. NML
CONTROL.NML - SOMETS

BRANCH.NML

TRNSL.FIL 0 BRANCHES
ABSTSQMNML L- VUR.NML
SCANSQM4. NML - - VARUSE ERROR.NL

t4ACUSE,' MACRO.NML - '

ERROR.NML MASTER N F
[Master File)

E I - Optional

FIGURE 3-4 - STATIC ANALYZER

3.3.3 Outputs

The Static Analyzer generates the following outputs:

a. SQM.NML - A file containing the software quality metrics.

b. BRANCH.NML - A file containing label and branching information

used in determining a programs structure and whether or not

undefined interfaces exist.

c. MACRO.NML - A file containing MACRO usage data.

d. VUR.NML - A file containing the variable usage data.

e. ERROR.NML - A file containing any errors.

f. Master File - A user-specified file concatenating all of the

static analysis output files.

3.4 ACAP REPORT WRITER

The ACAP executive passes control to this module when the user

selects main menu item 4, Report Writer. In addition, the report writer was

designed to be used by encoders and code analysis programs other than ACAP.

Use of the Report Writer while outside ACAP is accomplished by issuing the

command "*CAPWRITEN. This command places the user directly into the Report

-32-

Writer's executive menu from which report selection and processing options 4re

available. Either a single Master File or Individual Report Data Files may be

utilized as input to the Report Writer. See Appendix A for detailed

descriptions of these files.

3.4.1 Inputs

The Report Writer accepts the following inputs:

a. CONTROL.NML - A file used to control how the program is analyzed. .

b. SQM.NML - A file containing the software quality metrics of the
software being analyzed.

c. BRANCH.NML - A file containing the structure information on the
software being analyzed.

d. VUR.NML - A file containing the variable usage information on
the software being analyzed.

e. MACRO.NML - A file containing MACRO usage information on the
software being analyzed.

f. Master File - A user-specified file which contains all of the
static analysis output files concatenated into a single file.

g. Instrumented Source File - The instrumented assembly language

source file.

3.4.2 Processing

The procedures composing the Report Writer are shown in the structure
charts of Section 4. The interface diagram for the report writer is shown in

Figure 3-5. These procedures read the master file and sort the data as

necessary to create the output reports.

-33-

-~R C. R. K1 --- * -. - -
.- Y ~ . *..: Jr W IN

3.4.3 Outputs

The Report Writer generates the following outputs:

a. Module Report (Program Nae.MOD)

b. Summary Report (ProgramName.CPL)

c. Compliance Report (ProgramName.CPL)

d. Software Quality Metrics Report (ProgramName.SQM)
e. Calls Report (ProgramName.CAL)

f. Structure Diagrams (Program Name.STR)

g. Undefined Externals Report (ProgramName.EXT)

h. Variable Usage Report (ProgramName.VUR)

i. Sequenced/Paginated Listing (ProgramName.LST)

j. MACRO Usage Report (Program Name.MUR)

Examples of these reports are provided in Section 6.

-34-

MODULE
RE PORT

CAPWRITE SUMMARY
REPORT

CONTROL. NML -COMPLIANCE

CONTRL.NM REPORT

SQM.NML -- MODREP STANDARDS t

EREPORT

BRANCH.NML SUPE CALLS
.SUREP REPORT

VUR.NML - SQMREP STRUCTURE
CALLSRPT

.IAGM.s/

MASTER FILE STRUCTURE EXTERNAL

INSTRUMENTED - fXRE VARIABLE [-SOURCE FILE VUREPORT USAGE REPORTSEQUENCEOD

MACRO.NML SEQLIST PAGINATED
MACRPORT LISTING

MACRO
USAGE L

FIGURE 3-5 - REPORT WRITER REEPO

m35

MACRO.ML PAINATE

-.- . -.. 1.::

4.0 ACAP PROGRAM DESCRIPTION

The ACAP program is composed of the modules and procedures as shown

in Figure 4-2. These figures contain structure charts for the entire program

down to the subroutine level. In general, these charts only contain

ACAP-specific procedures and not library procedures. A definition of the

various structure chart constructs is shown in Figure 4-1.

The ACAP program is composed of modules and procedures written in VAX

Fortran and DCL (DEC Command Language).

Table 4-1 contains an alphabetized list of the source files which

compose the ACAP system. The following conventions have been used with

respect the file name extensions:

BAN - DCL file used to display a banner to the user indicating what
the program is doing.

COM DCL files.
FOR Fortran source files.

INC Include files.
MEN DCL files used to display a menu.

MTL Master template files.

NML Namelist files.

Table 4-2 shows which of these files must be linked together to form

the various ACAP modules.

.36-

TABLE 4-1

ACAP PROGRAM FILES,

Structure

Fi I ename Chart Number Description

6800.MEN 5.2.2 Banner for 6800 selection.

68000.MEN 5.2.3 Banner for 68000 selection.

ACAP.COM 0 Com file for running ACAP.

ACAPBAN.MEN 1 Banner for ACAP.

ACAPCAP.MEN 3.3.1 List of available languages.

ACAPEXIT.BAN 9 ACAP exit banner.

ACAPFLOW.MEN 3.2.1 ACAP flow diagram.

ACAPLAN.BAN 8 Banner used in New Language.

ACAPMAIN.MEN 2 ACAP main menu.

ASMCHOICE.COM 5.2 Corn file to select Assembly Language.

ASMCHOICE.MEN 5.2.1 Menu of available languages.

ASSESS.BAN 5.1 Menu of software assessment options.

ASSESS.COM 5 Com file for running software
assessment.

BINSEARCH.FOR 5.4.6.1 Subroutine BIN SEARCH.

BLK2BLK.FOR 5.4.2.4 Subroutine for extracting next token.

BRANCHES.FOR 5.4.5 Main routine for obtaining branch
metric data.

BRSIQNML.INC - Include file for BRCH SQM namelist used
in the file BRSqM.NIL to comunicate
between BRANCHES and SQMETS.

CALLSNML.INC - Include file for CALLS Nmlist.

CALLSRPT.FOR 6.2.3.1 Main routine for generating CALLS
report.

CAPWRITE.COM 6.2 Com file for generating reports.

-37-

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Filename Chart Number Descrlption

CNTRLCON.INC Include file for SUM REP and SUM EXEC
used to control metrTcs for sutaiary
report.

CNTRLREP.NML Namelist for controlling suamary report.

COMPLY.COM 6.2.1.2.2.1.1.1 Com file to edit REPORT.TPL (or MTL if
non-existent).

CREPAR•CON 8 Com file used in N Language,

CREPAR1.COM 8 Com file used in New Language.

CREPATH.FOR 6.2.3.6.1.2 Subroutine CREATEPATH.

CTEXEC.BAN 5.4.1 Banner indicating executing code
translator.

CURSORPOS.FOR 6.2.1.2.1 Subroutine SET CURSOR POS.
6.2.1.2.2.1.3.1

I DEFPRO.CON 5.4 Com file for doing translation and
static analysis.

DRAW ENU.FOR 6.2.1.1 Subroutines DRAW_ MENU and INVERT PRINT.

6.2.1.2.2.1.2

ERROR.FOR 4.4.2.2 Subroutine PRINT ERROR.

EXTREP.FOR 6.2.3.2 Main routine for generating External
Reference Report.

GENDAT.CON 8 Co file used in New Language.

GENRPT.BAN 6.1 Banner for Report Writer.

GENRPT.COH 6 Cor file for Report Writer.

GETCHR.FOR 6.2.1.3.1 Function GETCHR-single claracter
synchronous read;

GIVEHELP.FOR 6.2.1.3 Subroutine GIVE HELP for writing help
6.2.1.2.2.1.4 files.

038-

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Filename Chart Number Description

HALSCOM.INC Include file used by PAR68T.FOR and
SCAN68T.FOR for passing HALSTEADS
i nformatlon.

HALSKC.INC Include file used by PARSKC.FOR and
SCANSKC.FOR for passing Halsteads
information.

IDNML.INC - Include file for ID namelist.

INEDT.BAN 4.3.1 Banner indicating entry into editor.
4.5.1

INSEXEC.BAN 4.4.1 Banner for doing instrumentation.

INSTRN.FOR 4.4.2 Main routine for doing instrumentation.

INSTRU.BAN 4.1 Menu for instrumenting source code.

INSTRU.COM 4 CoB file for doing instrumentation.

INSTRUI.COM 4.2 Co, file for selecting source file name.

INSTRU2.CON 4.3 Cam file for defining instrumentation.

INSTRU3.COM 4.4 Com file for doing instrumentation.

INSTRU4.COM 4.5 CoB file for editing instrumented
source.

INTROCON 3 Co file for ACAP introduction.

INTROI.COM 3.1 CoB file for ACAP overview.

INTRO2.CON 3.2 Co file for ACAP flow.

INTRO3.COM 3.3 Cam file for language availability
intro.

IO.INC - Include file used in PRINRKG.

IRM.MTL - Master template file for
instrumentation. Used by INSTRU2.

LENGTH.FOR 6.2.3.4.1.1 Function LENGTH finds the length of a
6.2.3.7.3.1 string.

.39-

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Filename Chart Number Description

MACUSE.FOR 5.4.9 Complies MACRO usage information for
use by MACRPORT.FOR.

MACRPORT.FOR 6.2.3.9 Creates a MACRO usage report.

MACCOM.INC - Include file used by MACUSE.FOR and

MACRPORT. FOR.

PAS.COM 5.4.7 Corn file for creating master file.

MASTER.COM 8 Cor file used in New Language.

MENU.HL - Namelist file containing SNETRIC MENU
and $REP WRITE MENU used by REPEIEC
and SLIEIXEC. -

NENUNML.INC - tnclude file for METRIC MENU and
REPWRITE MENU.

ETRICCOM.INC - Include file for METRICS namelist and
common used by S(METS.

METRICNNL.INC - Include file for METRICS namelist.

MFCRE.BAN 5.4.7.1 Banner indicating creating master file.

MODREP.FOR 6.2.3.3 Main routine for generating Module
Report.

NEXTPROC.CON 6.2.3 Coo file for generating selected
reports.

iILEXEC.BAN 4.3.2 Banner indicating processing
instrumentation namlist.

NOAVAIL.MEN 5.2.4 Banner indicating language not
available.

NORMALIZE.FOR 5.4.2.3 Subroutine for normalizing a source
line.

PAR11T.FOR 5.4.11.7 Parses a line for POP11.

PAR68T.FOR 5.4.8.5 Subroutine for parsing NIUG source.

PARSER.FOR 5.4.2.5 Subroutine for parsing 6M sovrce.

-40.

I.4

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure

Filename Chart Number Description

PARSKC.FOR 5.4.10.5 Subroutine for parsing SKC source.

P6800.TBL - Parser Table for 6800 source.

PM68000.TBL - Parser Table for M68000 source.

POP11.MEN 5.2.6 Banner for POP11 selection.

PARSERNML.INC - Include file for 6800 PARSER TABLE.

PARSKCNML.INC - Include file for SKC PARSER TABLE.

P6800TBL.MTL - Master template file for 6800
PARSER TABLE.

PSKCTBL.MTL - Master template file for SKC
PARSER TABLE.

PAR68TNIhL.INC - Include file for P1468000 PARSER TABLE.

PM68000TB.MTL - Master template file for M68000
PARSER TABLE.

PATHPKG.FOR 6.2.3.6.3 Subroutine PATH and RECURSION.

PRINPKG.FOR 6.2.3.6.3.2 Subroutine PRINREP, STRUCTURE,
WRITE HEADER, CALCCOLS, BUILD LINE,
CHECKECURSION, LASTCALL.

PRINTEXEC.FOR 7.2 Main routine for view/print.
PRINTEXEC.HLP - HELP file passed to. GIVE HELP in

View/Print.

PSKC.TBL - SKC PARSER TABLE.

REPEXEC.FOR 6.2.1 Main routine for selecting reports.
Also contains SET UP RUN.

REPEXEC.HLP - Help file passed to GIVE HELP by
REP EXEC.

REPORT.MTL Master template file for Compliance and
Sumary Reports.

~-41-.

IN

,TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Filename Chart Number Description

RWEXEC.BAN 6.2.2 Banner indicating report writer

executing.

SAEXEC.BAN 5.4.3 Banner indicating executing static
analyzer.

SCAN11T.FOR 5.4.11 Translate PDP11 code.

SCAN68T.FOR 5.4.8 Main routine for M68000 code translator.

SCANNER.FOR 5.4.2 Main routine for 6800 code translator.

SCANSKC.FOR 5.4.10 Main routine for SKC code translator.

SCNSI HNML.INC . Include file for SCAN SQN (file
SCANS(Q.NML) and ABSTFACT SU I (file
ASSTSQM.NNL) namelists used to
comunicate between code translator
and static analyzer.

SELECT.FOR 6.2.1.2.2.1.3 Subroutine SELECT METRICS.

SELFILE.FOR 5.3.1 Main routine for selecting instrumented
file.

SELREP.FOR 6.2.1.2 Subroutines SELECT REPORTS and
NEXT MENU.

SELREPVP.FOR 7.2.2 Subroutine SELECT REPORT VP used in
View/Print menu selection.

SELSRC.COM 5.3 Coam file for selecting instrumented
source file.

SEQLISTFOR 6.2.3.4 Main routine for generating sequential

listing.

SKC.MEN 5.2.5 Banner for SKC selection.

SORTCH.FOR 6.2.3.6.1.1 Subroutine SORTCH.

S4 NETS.FOR 5.4.6 Main routine for compiling software
quality metrics.

SQIREP.FOR 6.2.3.5 Main routine for generating ssoftwere

Quality Matrics Report.

-42-

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Fi I ename Chart Number Description

SSORT.FOR 5.4.5.1 Subroutine SSORT.

STRINGCOm.INC Include file for SCANNER containing
string info.

STRUC.INC Include file used in RD PROC, PRINREP,
STRUCTURE, and CHECK RETURSION.

STRUCTURE.FOR 6.2.3.6 Main routine for generating Structure
Diagrams.

SUMCON.INC Include file for SUMREP with report
headings.

SUHEXEC.FOR 6.2.1.2.2.1 Subroutine SUM EXEC to select summary
metrics.

SUMEXEC.HLP Help file passed to GIVE HELP by
SUM EXEC.

SUHREP.FOR 6.2.3.7 Main routine for generating Summary and
Compliance Reports.

TOIML.FOR 4.3.3.1 Subroutine setting up instrumentation
namel1st.

TRANS.COM 8 Main routine for View/Print.

TRNSLCOM.INC - Include file for SCANNER containing
variable that are written to
translation file.

TRANSLTPL.FOR 4.3.3 Main routine for instrumentation
namelist.

UNIQUE.FOR 6.2.3.6.1 Subroutine UNIQUE.

UNISORTS.FOR 6.2.3.2.1 Subroutine UNISORTS.

VARUSE.FOR 5.4.4 Main routine for compiling variable
usage data.

VARUSENNL.INC - Include file for VARUSE.NNL part of

master file.

VIEWPRINT.BAN 7.1 Banner for View/Print.

VIENPR.COM 7 Con file for View/Print.
-43-

TABLE 4-1 (Continued)

ACAP PROGRAM FILES

Structure
Filename Chart Number Description

VUREPORT.FOR 6.2.3.8 Main routine for generating Variable
Usage Report.

VUSQMNIL.INC Include file for VU S(N namelist used In
the file VUS(QM.NML to communicate
between VARUSE and SQMETS.

Ik

-544-

TABLE 4-2

LINK SEQUENCE FOR ACAP PROGRAMS

Program Link Sequence

BRANCHES BRANCHES, SSORT, BINSEARCHN

CALLSRPT CALLSRPT

EXTREP EXTREP. UNISORTS, LENGTH

INSTRM INSTRM, LENGTH, ERROR

MODREP MOOREP

MACUSE MACUSE, SSORT

14ACRPORT MACR PORT

REPEXEC REPEXEC, SELREP, CURSORPOS, SUr4EXEC, DRAWMENU, SELECT,
GIVEHELP, GETCHR, LENGTH, ERROR

PRINTEXEC PRINTEXEC, SELREPVP CURSORPOS, ORAWMENU, GIVEHEIP,
GETCHR, LENGTH

SCANNER SCANNER, NORMALIZE, BLK2BLK, PARSER, SSORT

SCAN68T SCAN68T, NORMALIZE, BLK2BLK. PAR68T, SSORT

SCANSKC SCANSKC, NORMALIZE, BLK2BLK, PARSKC. SSORT

SELFILE SELFILE

*SEQLIST SEQLIST, LENGTH, NORM4ALIZE

* SQMETS SQMETS, BINSEARCH

SQMREP SQMREP

7SUMREP SUNREP, LENGTH

TRANSLTPL TRANSLTPL, TONNL. LENGTH

VARUSE VARUSE, SSORT

VUREPORT VUREPORT

STRUCTURE STRUCTURE, UNIQUE, SORTCH, CREPATH, PATHPKG, PRINPKG, LENGTH

SCAMIlT SCAN11T, PARliT, NORMALIZE, SSORT

-.45-~

.. ,,v+ , b k . - 4 -. , , +. , 3 , 7c..-a..-J .~u , u -~~u.r+-.+, nr r.+,r -w~ p-P £ra .- ,
' ' + ' n'

+"'J"-7%Ar. *

FIGURE 4-1

STRUCTURE CHART CONSTRUCTS

NAME

Independently Executable Module

" NAME1

i Subroutine

E NAME

I)I

Subroutine Subroutine Subroutine

NAME1 is NAME2 is NANE3 is

always conditionally always

called by called by called a

NAME. NAE. multiple

number of

time by

NAME.

-46.

I ... 0 - -I W M I L v

t

FIGURE 4-2

ACAP STRUCTURE CHARTS ",!,.

NOTE: The name shown in the boxes is the actual Fortran name by which the

procedure Is referenced. If the procedure is part of a larger fortran file a

note is made referencing the file name.

.47-

WM R

* RZ

Goo

L- - -

- u

Z
IN.4A

41 I

f478

-47CA

z..

20

zz

iai
ses

4

2500

.40 v

IIt

Iva-

IoI

0 w

WWI zoo

a z

W,'

do4

-47F-

tI

ell

aame~

.AWSih

I a00 Ma aaa

-47G-

I'~

4.f

'IZ

.41H.

z a!

p2.

-471-

- .

.ozgz.
0'-
2. U- z

S- w..U

a.a

- 4 6

whwQ
WA

o z
oi 9

A,..A

IN''A

%ou

-4 7J-

ol4,I A

Ic

1 111111
I 888

a-47K

'II
I:
I

4

I1

ids
-47L- Ee

rrr WV PWrrrr..rsrrirr2r.r3~rT.WrW- d * - r P 2 -' .3 a -, . -~a .~ ~ -~ -v- -r. S 3 - a -. -S - K-~~ r"

I.

4.

I. K
I

S
8 -~

~I ~

I

I--m

iii

-4714-

88

WWYNvv wwvwvvwvlww rw m-LAMM w m~wr - -. 1w,

Z2 0f a o @ 0

-I Ig

am

~20

9..9

but

-470-111

.J.I

tv~x

2.12

2ZE

q g -

S.00I

-47Q-

U " .q=r - *
v

*r>+ %. C r -t " -. . - r .; g- .. £-- X W.S-' Ir. .V,.: flf.a rpwp< k- a--= - ,- .- *----- -.- - v,

m2

-. .

Sm2

z 00

oz

S-47R-

*d..- -.

; VAii

-47S-

* * *tCb it Wtc NU a u ti -c iVIL r na rta-ll.I II-a t

IN 1

e91 imb z

II

iIii
1-47T- .8

ILII

IseU

'I. WN

IngI

-47L'- Sao

W~S,7~ ~ 2..' r .U1.~ - -

---4

9'

* -U

&

'.9 U

9'.

1

k

Ii
47~

go-I

0 "a

-47W.

un~~~~~~~~~~~~~~~~~~ FOMW- VFVvN WOu - #01.vvWC-VCMI

lb.

* :15

mCM3

Iowa
IC6

-47X- nil.

-as

all-

IIL3

(z

-47Y- Iii

WYP~ . r~. W.W W. ~rWA,.nM S *2WW")V~rrA .,n..~t.-~r~aa cu. ~ - I .t - ~ 17 -m

ZS4.

~~oil

11166

-47Z-
B

QIw

A1

IIA

-47AA-

16 IA in,

44

U46

Otm
10-1 72

-47AB

S. 1 %D 7j .W LV q V--SW m

7

ZU

us*

00

IAI

6,.6

ItI

-4AC

I I*

ata~

M.i

S .0

-47A-

0 in

l..

-47AE

5.0 ACAP DATA FILE DESCRIPTION

This section lists all the data files that are used by the ACAP

system for comunication between modules. Temporary files are not listed.

The table gives the file name, where the file is used, where the file is

created, and provides a brief description. Detailed formats for specific

files associated with the Master File are presented in Appendix A.

(Note: SCANNER is used here in the generic sense and stands for

either SCANNER.FOR, SCAN68T.FOR or SCANSKC.FOR.)

ACAP Flies With Fixed File Names

File Used Created Description

ABSTSQM.NML SQMETS SCANNER Information on instrumented
abstracts - number of lines
and number of lines skipped.

BRANCH.NML HAS BRANCHES Branch data for each
procedure. Put into master
file.

BRCHSQM.NML S(METS BRANCHES Information on branches -
number of forward, backward,
out, conditional, and
unconditional branches; number
of nodes and paths.

COMMENT.FIL SCANNER Optional debug data on
comments controlled by
COMMENT PRNT in PARSER TABLE.

CONTROL.NML HAS SCANNER Data used to control
analysis. Includes
PARSER TABLE. Put into master
file.

ERROR.NML HAS SCANNER Errors accumulated during
SQMETS analysis run. Put into master
BRANCHES file.
VARUSE

INSTRM.FIL SCANNER Optional debug data on
instrumented lines controlled
by INSTRM PRNT in
PARSER TABLE.

-48.

TTIT V. -W - ill -X ..

ACAP Files With Fixed File Names (Continued)

File Used Created Description

IRM,.NML INST3K INSTRU2 Instrumentation file
containing the instrumentation
value and code constructs
where value is to be inserted.
Created from IRM.MTL if
IRM.TPL does not exist.

MACROS.NML MACRPORT MACUSE MACRO definition and usage
information.

PARSER.TBL SCANNR Parser table containing a
description of assembly
language being analyzed.

PARSER.FIL SCANNER Optional debug data on parser
performance controlled by
PARSER PRNT in PARSER TABLE.

SCANS M.NML SQMETS SCANNER Software metrics accumulated
BRANCHES by SCANNER for each procedure

- dealing with instrumentation
such as module name and
sequence, procedure name and
sequence, number of lines
skipped, number of unique
operators, number of operators
used, number of unique
operands, number of operands
used, and the line number in
the instrumented source on
which the procedure starts.

SQr4. NML MAS SQMETS Data on software quality
metrics. Put into master
file.

STRINGS.FIL SCANNER Optional debug data on
strings found in each line.
Controlled by STRINGS PRNT in
PARSER TABLE.

TRNSL.FIL SQ4ETS SCANNER Translated assembly language
VARUSE code in generic form.
BRANCHES

VUR.NML MAS VARUSE Data on variable usage. Put
into master file..

-49-

ACAP Files User-Defined File Names

File Used Created Description

VUSQM.NML SQMETS VARUSE Data on number of variables
in a procedure.

Instrumented SCANNER INSTRM Assembly language source file
Source File SEQLIST instrumented so it is ready

for analysis.

Master File CALLSRPT HAS Concatenation of VUR.NML,
EXTREP BRANCHES.NL, SQ4.NML,
MACRPORT MACRO.NML, CONTROL.NHL,
MODREP ERROR.NML. (See Appendix A.)
PRINTEXEC
REPEXEC
SEQLIST
SQI4REP
STRUCTURE
SUMREP
VUREPORT

ProgramName.CAL CALLSRPT Calls Report
.CPL SUMREP Compliance and Summary Reports
.EXT EXTREP Undefined Externals Reports

* .MOD 1ODREP Module Report
.SQM SQ4REP Software Quality Metrics

*' Report
* .STR STRUCTURE Structure Diagrams

.VUR VUREP Variable Usage Report

.MUR MACRPORT MACRO Usage Report

Source File INSTRM

-50-

rs~~ -.-. r, W.-br-- SC. S .. .--.- .. r ,..- . - ... - -. ... CS-- Z4. ." LSK V%. ; -.- - - . 1'7 * -

6.0 SAMPLE REPORTS

The various reports available from ACAP are displayed in this

section. These reports are obtained by using the generalized report writer

described In Section 2.4.

4. -s

-S.?-

II

w~ I

I 4

0. 1 I

(A Il IL
j I

(a o i I -L

Ip I I& L
goI

* I I I-

I I I

Ell I - - - -- ri' qNNiNNNNNM MffllfM MM n MV V*W *V**t I

It -

N m In

m I
M, w

W m
1. 2-I

W9 I "M j -I!di
illm Ix w W

1~ 2~

au ON 0 41

II

CI
at ' (14~0cnr4s Ocru~~

I w

I II (L

I I

, I. : I: ;:(* ;0N

o f

I IIt

I I I I

I III
I I I)

I -sic-

4 M or 0 N 0.n M N m-

fl nS rpr A N N N W W W 0 eI*. CL. F.M) T-.bbS r- - -1%..

I
-. ,q. ,", ,,, ,,- .+ 0. o' N. m -. I'n',, -0 ,-% M o+ 0T, M *)aNM0 r04 ma

II

t

t I

I I

*~~i 0 c wnS0. o

I I

-0 -.0--- ---- --

: I I

SI

uI
-S I

* I i
I II I
* I I -I I

* I .i ,I II I I + !
I """Il

*")+(I I ~I
* IWII 4

0I~I *-4 4 -

WIZI 4 o.4 ,

- - - - - - - - - -. (- N N M M~ MrMM MMsrM

wlI OOO~J I W

-A I W I

Ix.
(D, CILaC

TI-

u. *

~ W1I J~i
411 5il 21111&,zjiE Iof IN-11

0SE

CL

J Is

0. c

W - W It I

ASF

=lUNCLASSIFIED PAGE: 1

C A P MODULE REPORT

Prograrn: FNLTEST

Module name * Procedure name Page

MODI SIXTEENCHAR * 3 Procedure(s) %

INSTPROCSIXTEN 1
CINST 2-'

DINST 2

MOD2 I 3 Procedure(s)

JINST 2
MINST * 3
NINSTS 3

MOD3. 2 Procedure(s) * v
-- --------------------

I SINSTS 3 .

TINSTS 4

MOD4 2 Procedure (s)

----------------- ----------------------------------- --------------
1 MACTESTS 4 ;'

CONDTEST 5

UNCLASSIFIED

-SIG-

IfII
11 0 I II

N WI

42 I

!'I

0 I) I I

ItI

a~ ~ I : II- - -1 o

II . I - - . - i I

IW 11.- it

II w I

W 0W I
I - ul I- IN Cuj

Go -e %I I

n 11 ' I of I II

J11 41 I

If

Ill Z I I I

- I, .111'iI

ofI) II

It-II

I I

II - I --II
J, I

-C2l II
-- I -~ ,r of

I9~ Wof

'II-51H'

4I-AL65 129 METHODOLOGY INVESTIGATION PROGRAN FLON ANALYZER VOLUME 2/'2
2(U) RNY ELECTRONIC PROVING GROUND FORT HUACI4UCA AZ
E L RNDERSON SEP 85

UNCLSSIFIED F/ 9/2 NL

I IhhhhhhhhhohhI
I flmommommoheE

A 1111U

ninlA V02

111.2 1 . L6

MICROCOPY RESOfLUTI TEST CHANT
nF~qP,.EW 1~W~~

4 (D

t Ito. .. K K Il

II I II

If t 3 II

I. U--oII

If

11~ W~ f W f I E fl W 40 Lfl WA .w w
U! LU I W I W W LU W LU W II

1,

31 . > >

II .I II

I (nI to " II
II i I I

I l j ~ II..I.. . . . i . II

I I I III
a'm,, I W II

I " "

II S I . I

II fn3 I Ii
W I Wd

I I- LA II o I I

I I In I N

I i !. > "

116 05' I :

31. .1 - Igt

IN A I IN

.1 W , i , W ,

:0- : I v I

': ' M taill

I

* , I I I
A 10 In I NI

0 - > I .)W.iVu IIf '.1W I W> I W> I 1 0

NIP..j I I I I I I

I -

N~A I IS

w~o~ I I it
I Ifg

to 12 I

sL A I W IN

u I I I I

If I . IN

I I si t

siE -

-t -

-'a

H.-....
* I II
HWXOIO C.I.-.,C. 'I

- S * .1w-,- ~6i 'a2~1 IH
- SM

.1 I II

H 1* S I
H .WO 4 q 010 P. I- H
lOX 41# ' Iii
Hz U * I . 'H

I I I 'H
H ~.

H 55 * * '
H. - **. 'H

'H

.II~ sli

ml -*1
I .. I
I I I ' I II I I I I

SS~ . III

I IIH.12e5080!H1'H
INII
III

* I I I I I IN
U----I-I-I--I--:--'--s la-I.I-IOlOsr,-.,I
I '*I-I-? IM~ : : .

*~ ~H I I . I I H:~~-: : '
I I . .1II

~ ~ IflIH w
I I I S I H -

~ I I I H
10 - , I p I I HH~I I- I I I I I IH

~ H I I I I I I U

~ I! iHI8ii2~e!8!0!nI
I ~? ~ Sb: ~:I.IIIN: I-I 1(11 I H

II I-~3 I I I IN
H01 I II
H~.J I I I I H
H I I I I III

--- II
H~ I . .1

0
~HI , .11

I lIE
I H

II I
H II
II I
H I I 1(111 'II
II U

I . 2
H I IIflIUIIC,
Ii * *W IaaI~'
H U'UI.I IIII £~tu.
H UI ~'EIK II

IjJ -~I~1WiI~ *. I
H

H I
II ~ W~~':~ ~..

H '2' 2hZ

I ~,ES ~
H--..................................

-51J-

UNCLASSIF!ED PAGE:

FNLTEST SOFTWARE QUALITY METRICS REPORT

CODE ANALYSIS REPORT FOR MODULE: MOD1 SIXTEENCHAR
CODE ANALYSIS REPORT FOR PROCEDURE: INSTPROC.SIXTEN

LINES IN THE ABSTRACT 3
COMMENT ONLY LINES - 0
EXECUTABLE LINES = 31
NON-EXECUTABLE LINES =

LINES SKIPPED = 0
COMMENTS FOR EXECUTABLE LINES - N/A

COMMENTS FOR NON-EXECUTABLE LINES - N/A
COMMENTS ON A LINE OF CODE =

PERCENT OF EXECUTABLE LINES COMMENTED = N/A

PERCENT OF NON-EXECUTABLE LINES COMMENTED - N/A
MAXIMUM CONSECUTIVE LINES WITHOUT A COMMENT = 37
EXECUTABLE STATEMENTS = 31

NON-EXECUTALE STATEMENTS " 22 2
MULTI-LINE STATEMENTS - N/A
MULTI-STATEMENT LINES - N/A
LINES OF CODE (PRIMARY LANGUAGE) " 31
LINES OF CODE (EMBEDDED LANGUAGE) - N/A
PRIMARY VS. EMBEDDED LANGUAGE SWITCHES - N/A 2
NUMBER OF VARIABLES n 23
TOTAL LINS 56

ENTRY POINTS 4

EXIT POINTS - I
INCLUDE STATEMENTS 2

FORWARD BRANCHES - 2
BACKWARD BRANCHES - 1

1 BRANCHES OUT (3F THE ROUTINE m 0
CONDITIONAL BRANCHES 2

I UNCONDITIONAL BRANCHES - 1
-I-- -- - -- -- -- - -- ------- ---------

. METRICS REP3RT FOR PROCEDURE: INST PRC.IXTEN
*~~~~~~~~~ --------------- -- --------------

M: : ODES a
! PATHS 9

MCCABE' S CYCLOMATIC - 3~ I - - - - - - - - - - -

I : HALSTEADOS ANALYSIS :
- --- -- -- -- -- -- -- -- -- -- -- -

UNI QUE OPERATORS - 23
UNIQUE OPERANDS

, 31

TOTAL OPERATOR USAGE
1

I TOTAL OPERAND USAGE
87

S P RAM LENGTH n 135
P IRAMn. VIgUME T76.Y1

PRGRAM LEVEL
w .90

S POTENTIAL VOLUME
0.40561

* - 43.631
; D IFFIC.UL.TY m 17.0 a"

mu EFFORT "13834.008

UNCLASSIFIED

I5K-

UNCLASSIFIED PAGE: 2

FNLTEST SOFTWARE QUALITY METRICS REPORT

CODE ANALYSIS REPORT FOR MODULE: MODISIXTEENCHAR
CODE ANALYSIS REPORT FOR PROCEDURE: CINST

LINES IN THE ABSTRACT = 0
COMMENT ONLY LINES 0
EXECUTABLE LINES 9
NON-EXECUTABLE LINES 0
LINES SKIPPED - 0
COMMENTS FOR EXECUTABLE LINES N/A
COMMENTS FOR NON-EXECUTABLE LINES N/A
COMMENTS ON A LINE OF CODE = 1

PERCENT OF EXECUTABLE LINES COMMENTED = N/A
PERCENT OF NON-EXECUTABLE LINES COMMENTED - N/A

MAXIMUM CONSECUTIVE LINES WITHOUT A COMMENT 6
EXECUTABLE STATEMENTS 9
NON-EXECUTABLE STATEMENTS 0
MULTI-LINE STATEMENTS -N/A
MULTI-STATEMENT LINES -N/A *

LINES OF CODE (PRIMARY LANGUAGE) 9
LINES OF CODE (EMBEDDED LANGUAGE) -N/A
PRIMARY VS. EMBEDDED LANGUAGE SWITCHES - N/A
NUMBER OF VARIABLES 3
TOTAL LINES 9

------ - -- -------------------- ---- ---------- ---- -

ENTRY POINTS I 1
EXIT POINTS - I
INCLUDE 9TATEMENTS - 0

FORWARD BRANCHES 0 I

WARD BRANCHES " 0
BRANCHES OUT'OF THE ROUTINE 1
CONDITIONAL BRANCHES I I
UNCONDITIONAL BRANCHES - 0

SMETRICS REPORT FOR PROCEDURE: CINST

NODES - 3
PATHS - 3
MCCASE' 8 CYCLOMATIC - 2

HALSTEAD' S ANALYSIS :

UNI QUE OPERATORS 12
UNIQUE OPERANDS 12
TOTAL OPERATOR USAGE a 30
TOTAL OPERAND USAGE a 14 t1
PROGRAM LENGTH a 44
PRORAM VOLUME - 201.730
PROGRAM LEVEL - O.143
POTENTIAL VOLUME - 2.2
DIFFICULTY " 7.000 1
EFFORT a 1412.166 1

* UNCLASSIFIED

UNCLASS I F I ED PAGE: '

FNLTEST SOFTWARE QUALITY METRICS REPORT

CODE ANALYSIS REPORT FOR MODULE: MODISIXTEENCHAR
CODE ANALYSIS REPORT FOR PROCEDURE: DINST

LINES IN THE ABSTRACT - 0
COMMENT ONLY LINES = 0
EXECUTABLE LINES - 10
NON-EXECUTABLE LINES = I S

LINES SKIPPED - 0
COMMENTS FOR EXECUTABLE LINES - N/A
S COMMENTS FOR NON-EXECUTABLE LINES = N/A
COMMENTS ON A LINE OF CODE = 2

PERCENT OF EXECUTABLE LINES COMMENTED - N/A
PERCENT OF NON-EXECUTABLE LINES COMMENTED = N/A

MAXIMUM CONSECUTIVE LINES WITHOUT A COMMENT 5
EXECUTABLE STATEMENTS 10
NON-EXECUTABLE STATEMENTS - I
MULTI-LINE STATEMENTS N/A
MULTI-STATEMENT LINES N/A
LINES OF CODE (PRIMARY LAN AGE) o10
LINES OF CODE (EM EDDED LANGUAGE) - N/A
PRIMARY VS. EMBEDDED LANMAGE SWITCHES - N/A
MBER OF VARIABLES 1

TOTAL LINES 11
* ----- - ---------------------------------- ------ -- I

ENTRY POINTS 2
EXIT POINTS 1 1
INCLUDE STATEMENTS 0

S BACKWARD RA 'HES " 1 1
BRANCHES GUY OF THE ROUTINE I 1
CONDITIONAL BRANCHES 2
LNCONDITIONAL BRANCHES - 0

I METRICS REPORT FOR PROCEDURE: DINST I

S NODES S
PATHS I & I

2 MIcAIIS CYCLOMATIC - 3 12 . . . - - -- 2
HALSTEAD'S ANALYSIS :

UNIQUIE OPERATORS I 13 2UNIQUE OPRANDS - 12

TOTAL OPERATOR AG 30 t
I TOTAL USAGE I 17 $
S PROGRAM IITH 47

VOLUM 218.261*' 2 PIROGRAM VCLUM'E - 0.1 1

PROGRAM LEVEL 0.3109
POTENiTIAL VOLUME 23.703 1
DIFFICULTY 9.208 I
EFFORT 2009.@2 1

~~UNcLAIIED
I -5I1N-

UNCLASSIFIED PAGE: 4

FNLTEST SOFTWARE QUALITY METRICS REPORT

? GLOBAL CODE ANALYSIS REPORT FOR MODULE: MODISIXTEENCHAR

LINES IN THE ABSTRACT - 3
COMMENT ONLY LINES - 0
EXECUTABLE LINES - 50
NON-EXECUTABLE LINES = 23
LINES SKIPPED - 0
COMMENTS FOR EXECUTABLE LINES = N/A
COMMENTS FOR NON-EXECUTABLE LINES - N/A
COMMENTS ON A LINE OF CODE 8 9

a PERCENT OF EXECUTABLE LINES COMMENTED = N/A
PERCENT OF NON-EXECUTABLE LINES COMMENTED = N/A

MAXIMUM CONSECUTIVE LINES WITHOUT A COMMENT 37
S EXECUTABLE STATEMENTS 50,

NON-EXECUTABLE STATEMENTS 23
a MULTI-LINE STATEMENTS N/A

MULTI-STATEMENT LINES N/A
LINES OF CODE (PRIMARY LANGUAGE) 50

a LINES OF CODE (EMBEDDED LANGUAGE) N/A
a PRIMARY VS. EMBEDDED LANGUAGE SWITCHES N/A
a NUMBER OF VARIABLES 27 l >

l TOTAL LINES 76

a ENTRY POINTS 7
EXIT POINTS 3 a

INCLD STATEMENTS =
--- -- - - - - -

FORWARD BRANHES 2

BACXWARD BRANCHES " 2
I BRANCHES CUT OF THE ROUTINE - 2
I CONDITIONAL 'BRANCHES 5 a

UNCONDITIONAL BRANCHES - I

I METRICS REPORT FOR PROCEDURE: GLOBAL

; NCWIES m 16 l

I PATHS is0

A.MCCABE' S CYCLO1ATIC 8 - a

HALSTEAD'S ANALYSIS IS NOT APPLICABLE: I

UNCLASSIFIED

UNCLASSIF IED PAGE 1

C A P CALLS REPORT

Progr am: FNLTEST

Procedure name : Procedure called
--- 6

--- I

INST.PROC SIXTEN 2 Procedure(s) called

SUBONE
CINST

CINST 1 Procedure(s) called

--

DINST

-- S

DINST 1 Procedure(s) called -

* -- -- ---------------------- --- - --------------------------

2 JINST o

JINST 2 2 Procedure(s) called

2 SUSTWO

I NINSTS
0IST 0Z Prcd!)cle

: INST 1 1 Procedure(s) called 2

* I l ~ m

2 1 NINSTS

2IST 1 0 Prcdr2)cle

I NINTS 0 Procedure(s) called

2 SINSTS 1 1 Procedure(s) cal led 2

1 ; TINSTS8

2 TINUTS 0 0 Procedure(s) called 2

--
2 MACTEUTS 2 0 Procedure(s) cal led

UNcLASSIFIED

-610-

UNCLASSIFIED PAGE 2

C A P CALLS REPORT

Program. FNLTEST

Procedure name : Procedure called
a---

C0NDTEST 0 Procedure(s) called

-sp

* 0

* a

I [2

-- S

-U

* I I
II I I 99
* 9 I A ii

-. 9 9~
* I
* 9 99
* 9 I 91 '9

I Ii
I IA

. 9 I
0.91

* .9

I . . .
.9 9 9.9
A 9 99
A I 191 . 99
* *,* .0
A I
* . 91
A I IA
A
d A
A
* II 99
A II
A 9 III
A I 91
* I I Ill II
A I,
* II II
A ..
A 9*
A
II
U
A
A
A
* .9
* II
* II
* ii
A I,
A 99 99

4 A .9
A t i-i I I
* I I IA U
* I I IA A

~ZI III II
~ liii III Iz. 9~ IiI ~ iI A A

.. I l-:u U
US I IA
Ii I--I I 'I

* I ' A
I-I' IA A a
I .~ lOin II iii

3W1 Ii II A A -1.1.51-.. ~IUi IA A II.
14061 I--lw A -

* uzgzIIa.e I is
1 iLEiOi 99 A

A
1.1 4l0~9 A A

A

A
4 A

A WI A* I A
4. A

i..911 aA
AlL I 95 A

9 I .5 A
ii A A

.9 I I Ii' A
I i~..I II A
I I IA A

* AU I--I' A
A I I IA A
Alas 9j9 A

2.0 II
I, ii

A- .9 A
99 A
9. .1
.9 II

I A
AU it

I ~.

is
I 9:ii

Au 9

. ~ 9A Iq: Z9 999 - .9
A 9 I '9 . .9
A
A is
5 9
A .9
A .' is
A 9 * Z -
A I - a is
A . 9-
A . - ~
A . I .~
A' 'I
A Z
A 9
A 99
A ~ .*.
A .
A .j
A 99- , .9
A IA
A '~

I :-- 99 *
9 II I I

-S1Q-

U

UNCLASSIFIED PAGE: 1

UNDEFINED EXTERNALS REPORT

SUBROUTINE CALLS

SUBONE

SUBTWO
-- ------------------------------------

UNCLASSIF IED
-SIR-

-5 IA-

................. IP
18

*I 10 III-
- -,*

10 0 10 I* 1 1 0

II I

ii I .

I II .0
UII I II

I 10 10
IIU i0 II

1010 II 1

a 1 10 € II

* 10....1 10Il

I 10 1 1

I 10

I. . W,, N

I1

" I I PNU.

S..'o .' .

'l . ., .

mu HE.

o. .o o . , , ';'"'"

*I :., i II

1 99 Hi I
II 'I .,II NS

0uI II *iIi II

II 'I 'I ,I i
N I I 41 N,

3 II 9 Id

t I :9 ol

* ;
*II ! I ,

I t II I N
II 'I 'I I

NII I 'I P
goII 9I Idli II

.1 1 it *t* I

. N
I I N II

3 LI II I IN

ilN NI "II Il
*II II ,95 H t

* I IN aI I
* *.... I............ :q"

- I ii 91 IN N

.I 8a io lat a
N .- '........... -- S TN N il .9 II

* 1"IW 'I I NI

-oo-H o o... I -a
Ou I I N -IIOOII OON

N I -
-u ~ -

ON -- I1T-

1

it~~ t1 '1

II I It I IIII K II I I .i
K I II IU KI
*i HI o I II Kb
SK I It I

i'- iI !i It I II
* :I II II II I

KI lit it
if

* L;II1 I * II

!I I

n1 ai
K I! It

it :: :, , 1

KI tl II a. .h '

.1 I '

SI n o I

U 'I I! It 1 i
* I K li I I II

* III II ii
I a I I II
SK ,I 1 1 I
I d -I 0II II* Ii I

I

ill II

K K 1 4II I* -- -.. UI.. I I-- II
" U I I Ka II * I1 oo. . I it I." I

IIN, on I 0 1 -1 i.

IKIt1 II
SI K WIt iI Klit
K I C U 1 I f U
K 'i -- a- -i

I i KU It

0 pq iii

UI I *

t?

I ~ U I iD :i ii II I,-

cm gi'::oo:

p K 9

I I I N

N II I: i. 8

*O a. K Ul IIb II

* fl---KH------i I--U

II US N UN KI I
* N> II KK KI
I nt K N I KI

* Kl NI KbI It
K K It Hl II i
* II ii 'I I tl

H KI II NH K
* K K EUI II

I U UI nK It
4 ! ' :pfl i
*I II t. :tir I
* N I 11KMP

K I ' "ii F ,I II
U K '1I IIK I.,, " K

* K SI U

N I'm *'*QZK Ua I
K 44 :1 fl UK N,

* 1 '~ II PPM KS :* "It 'uaui K
KIK 'I C - KU ,I
It KI U I I
.....---.......

-51u-

-..

* N a I IN I

i~r ai ,
SI I

INN N

a 3 I I N o

O 1 3 C

I. It W .1 1

IX 1 1

* i I 3'

* II I N,
.3 I I I N

g laN

- I 3 '

N-

l K I -. ' N
.. I I * N

No

N_ - _. I

I N

NI* WiWI W WI

~; ; ; : t
* N I I I II v

APPENDIX A

MASTER FILE DESCRIPTION

The master file contains a concatenation of all of the principle

files resulting from the ACAP static analysis. This file has a user-specified

file name and is in namelist format. For more information on

namelist-directed I/O, see the VAX-11 Fortran Language Reference Manual.

A.1 NAMELIST - DIRECTED I/O

As specified in the VAX-11 Fortran Reference Manual, each namelist

data block has the form:

$group-name entity - value [,entity - value,...]$[END]

where:

$ is the special symbol used to indicate the beginning or end of

input. The ampersand (&) can be used in place of the dollar sign.

group-name is the name of the namelist that contains the entity or

entities to be given values. The namelist must have been previously

defined in a NANELIST statement in the program unit.

entity is a namelist-defined:

0 Variable

0 Array Name

* Subscripted Variable

0 Variable With a Substring

* Subscripted Variable With a Substring

value is a constant, a list of constants, a repetition of constants
in the form r'c, or a repetition of values in the form r* value.

END is an optional part of the last delimiter.
-52-

A.2 MASTER FILE FORMAT

The five files from which the master file is constructed are:

VUR.NML - The file containing the data on variable usage. ..

BRANCHES.NML - The file containing the data on branches.

SQM.IML - The file containing the data on software quality

metrics.

MACRO.NNL - The file containing the data on MACROS.

CONTROL.NIIL - The ACAP control file.

ERROR.NMIL - The file containing the errors accumulated during the

ACAP run.

At the beginning of each of these files is the data block for the

namelist group-name "ID'. This data is followed by the data for the other

namelist group-names in that file. Each of these files contains a variable

number of namelist data blocks dependent on the source code being analyzed and

the user options selected.

The format of the master file can be summarized as follows:

File Name Group-Name Number

VUR.NHL ID There is one per VUR.NML file.
VAR LISTS There is one VAR LISTS for each module

followed by all 'he VARUSAGE groups for that
module.

VARUSAGE There Is one VARUSAGE group for each procedure
plus one for the global variables in the
module. The "global" VARUSAGE is flagged by
PROC SEQ a 0 and must precede the "procedure*
VARUrAGE groups.

-53-

File Name Group-Name Number

BRANCHES.NML ID There is one per BRANCHES.NML file.
PROC LISTS There is one PROC LISTS for each module

followed by all tFe CALLS groups for that
module.

CALLS One per procedure.

SQM.NML ID There is one per SQM.NML file.
METRICS There is one METRICS group for each procedure

in a module plus one for the entire module.
The METRICS group for the entire module
follows the others and is flagged by PROC_NAME
- 'GLOBAL' and PROC SEQ - 0.

MACRO.NML MACS One per MACRO occurrence.

CONTROL.NML ID 1 per CONTROL.NML file.
PARSERTABLE 1 per CONTROL.NML file.

ERROR.NML ID 1 per Group-Name
SCANNER ERR 1 per error from SCANNER.
ID 1 per Group-Name
BRANCHES ERR 1 per error from BRANCHES.
IO 1 per Group-Name
VARUSE ERR I per error from VARUSE.
ID - 1 per Group-Name
SQMETSERR 1 per error from SQMETSJ

A.3 NAMELIST GROUP DESCRIPTIONS

The entities within each of these namelist group-names are described

in the following table. There is a type specified for each entity which takes

the form:

TYPE N

where:

TYPE is either Char for CHARACTER data; lnt for INTEGER data

N is the number of bytes.

The Dimensions column gives the size of the array dimensions if the variable

is an array.

-54-

TABLE - NAMELIST DESCRIPTIONS

Entity Type (Dimensions) Description

ID

PROGRAM NAME Char 15 The name of the program.

SOURCE FILE Char 15 Source file being analyzed.

SOURCE FILE CLASS Char 1 Classification of source file:
U a Unclassified
C - Confidential
S - Secret
T - Top Secret
Any Other Character w ERROR

SOURCELANGUAGE Char 15 Source language selected.

DATE TRNSL Char 10 Date translation of source
occurred.

TIME TRNSL Char 10 Time translation of source
occurred.

FILE NAME Char 15 'SQN.NML', 'VUR.NNL',
BRANCHES.NNL', or 'CONTROL,N1fL';
or for ERROR.ML file, **Proc
Name** where Proc Name is
SCANNER, VARUSE, BRANCHES, OR
SQNETS.

VAR LISTS There is one VAR LISTS for eachmodule followed 5y all the
VARUSAGE groups for that module.

MOD NAME Char 31 odule name.

N PROCS Int 4 Number of procedures in module
(Max - 400).

PROCKEY Int 4 (400) Variable flag for each
procedure: 0 a Contains no
variables, Else - Number of
variables.

PROC LIST Char 31 (400) Names of procedures.

VAR LIST Char 31 (3000) Names of variables.

-; I I II55.I.

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

VARUSAGE There is one VARUSAGE group for
each procedure plus one for the
global variables in the module.
The "global" VARUSAGE is flagged
by PROC SEQ - 0 and must precede
the "procedure" VARUSAGE groups.

"Global" VARUSAGE The format for the "global"
VARUSAGE group is as follows:

PROC SEQ Int 4 Procedure sequence number in
module. 0 for "Global".

LVARS Int 4 Number of entries in VAR USAGE.
There is an entry for the-usage
of each global variable in each
procedure in which it appears.

VARUSAGE Int 4 (6,3000) Variable usage for each
procedure, N a 1 to L VARS.

(1,N) Index to the global
variable name in VAR LIST.
2,N) Number of times modified.
3N) Number of times
referenced.
(4,N) Number of time tested.
(5,N) Number of times variable is
used as an argument.
(6,N) Number of times defined.

VAR TYPE Char 3 (3000) User defined variable type
printed on Variable Usage Report.

VAR ACCESS Int 4 (3000) Index to procedure name in
PROC LIST (contained in PROC LIST
group). The global variable"
named in VAR USAGE (1,N) above
appears in tF procedure named by
VAR ACCESS (N) with the variable
usage as specified in VAR USAGE.

"Procedure" VARUSAGE The format for the "procedure"
VARUSAGE group is as follows:

PROC SEQ Int 4 Procedure sequence number in
module.

46-

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

L VARS Int 4 Number of variables in this
procedure.

VAR-USAGE Int 4 (6,3000) Variable usage for this
procedure, N = 1 to LVARS.

(1,N) Index to the variable name
in VAR LIST.
(2,N) Number of times modified.
(3,N) Number of times
referenced.
(4,N) Number of time tested.
(5,N) Number of times variable is
used as an argument.
(6,N) Number of times defined.

VAR TYPE Char 3 (3000) User defined variable type
printed on Variable Usage Report.

VAR ACCESS Int 4 (3000) Data access information.
0 - Local Variable
1 - Global Variable
2 - Argument

PROC LISTS There is one PROC LISTS for each
module followed b all the CALLS
groups for that module.

MOD NAME Char 31 Module name.

NPROC Int 4 Number of procedures in module
(Max a 400).

PROCLIST Char 31 (400) Names of procedures.

PROCLINE Int 4 (3000) Line number of procedure.

N_ENTRYPOINTS Int 4 Number of entry points.

ENTRYPOINTLIST Char 31 (3000) Names of the entry points.

CALLS One per procedure.

PROC SEQ Int 4 Sequence number in module.

NUN CALLS Int 4 Number of procedure calls.

PROC CALLS Char 31 (400) Procedure names.

-57-

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

PROC CALLSLN Int 4 (400) The line number from which the
call was made.

METRICS There is one METRICS group for
each procedure in a module plus
one for the entire modoule. The
METRICS group for the entire
module follows the others and is
flagged by PROC NAME - 'GLOBAL'
and PROC SEQ - U.

MOD NAME Char 31 Name of module.
MODSEQ Int 4 Sequence number of module.

PROCNAME Char 31 Name of procedure.

PROC SEQ Int 4 Sequence number of procedure.

N ABSTRACT Int 4 Number of lines in the abstract.

N COMMENT LINES Int 4 Number of comment only lines.

N LINES X Int 4 Number of lines where an
executable is the first
Instruction on the line.

N LINES NX Int 4 Number of lines where
non-executable is the first
instruction on the line.

N LINES Int 4 Total number of lines.

NCOMMENTSX Int 4 Number of comments in
executable statements.

N COMMENTS NX Int 4 Number of comments I n
non-executable statements.

* N INLINECOMMENTS Int 4 Number of lines of code which
contain a comment.

* N PER COMM X Int 4 Percent of executable lines
commented.

NPER COMM NX Int 4 Percent of non-executabl(lines
commented.

"S6-

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

MAXWOCOMMENTS Int 4 Maximum number of consecutive

lines without comments.

NSTAMNTSX Int 4 Number of executable statements.

N STAMNTSNX Int 4 Number of non-executable
statements.

MULTLINE STAMNTS Int 4 Number of compound lines.

MULTSTAMNTLINES Int 4 Number of multi statement lines.

NENTRY_.PTS Int 4 Number of entry points.

N EXITPTS Int 4 Number of exit points.

N BRANCH FRWD Int 4 Number of forward branches.

N BRANCH BACK Int 4 Number of backward branches.

N BRANCH OUT Int 4 Number of branches out of the
routine.

N BRANCH COND Int 4 Number of conditional branches.

N BRANCH UNCOND Int 4 Number of unconditional branches.
N NODES Int 4 Number of nodes, 0 If no

executable statements.

N PATHS Int 4 Number of paths, 0 if no
executable statements.

MCCABES CYCLOMATIC Int 4 McCabe's cyclomatlc, 0 is no
executable statements, else paths
- nodes + 2.

N LINESSKIPPED Int 4 Number of lines that were skipped
by the parser (ST SKIP
ENDSKIP).

N INCLUDES Int 4 Number of include statements.

N OPERATORS [nt 4 Number of unique operators.

N OPERATORS USED Int 4 Number of operators used.

N OPERANDS Int 4 Number of unique operands.

-59-

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

N OPERANDS USED Int 4 Number of operands used.

NPRIM_LINES Int 4 Number of lines of primary code.

N EMBEDLINES Int 4 Number of lines of embedded code.

N SWITCH Int 4 Number of switches from primary
to embedded code and back.

NVARS Int 4 Number of variables. in a
CODE COUNTS Int 4 20 Instruction code usage in a :

procedure.

MACNAME Char 16 MACRO name.

DEFUSEFLAG Char 1 Flag indicating whether
occurance is a definition or use
(O or U).

PROCNAME Char 16 Defining module or using
procedure name.

N USE Int 4 If DEF USE FLAG - D N USE is
page number of definition else
it is the number of times used
in a procedure.

MAC SIZE Int 4 MACRO size in lines.

PARSER TABLE

INSTRUMENT VALUE Char 15 User-defined ASCII string that is
. - not a valid construct of target

language used to identify
instrumentation lines.

PARSER PRNT lnt 4 Flag used to turn on output to
debug file PARSER.FIL.

STRINGS PRNT Int 4 Flag used to turn on output to
debug file STRINGS.FIL.

COIVMENT_PRNT Int 4 Flag used to turn on output to
debug file COMMENT.FIL.

INSTRMPRNT Int 4 Flag used to turn on output to
debug file INSTRM.FIL.

-o

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

N ASSM Int 4 Number of assembly language
mnemonics.

ASSM-INSTS Char 8 (200) Assembly language mnemonics.,

ASSM CODES Int 4 (200) Code for each mnemonic.

ASSN MODES Int 4 (200) Address mode for each mnemonic.

ASSNSPECS Int 4 (200) Special information about the
instruction.

N USER Int 4 Number of user-defined
60 instructions.

USER INSTS Char 8 (100) User mnemonics.

USERCODES Int 4 (100) Code for each user instruction.

USER MODES Int 4 (100) Address mode for each user
instruction.

USER SPECS Int 4 (100) Special information about each
user instruction.

SCANNER ERR

ERROR CODE Char 3 Error code.
ML - Multi-line error.
IRM - Incorrect instrumentation
construct or non-comment in
abstract.

MODNAME Char 31 Module name.

PROCNAME Char 31 Procedure name.
N LINES Int 4 Line number in the procedure.

LINE Char 80 Line being scanned.

BRANCHES ERR

MOD NAME Char 31 Name of module.

PROC NAME Char 31 Procedure name.

ERROR CODE Char 3 Error code (none currently
defined).

~-61-

TABLE - NAMELIST DESCRIPTIONS (Continued)

Entity Type (Dimensions) Description

N_LINES Int 4 Line number in the procedure.

VARUSE ERR

MOD NAME Char 31 Module name. 3.

ERRORCODE Char 3 Error code:
SRT - Sort failed

S METS ERR

ERROR CODE Char 3 Error code:
NML - PROC names in namelists
do not match.
GEN - Invalid assembly
language code.

MOD NAME Char 31 Module name.

PROC NAME Char 31 Procedure name.

NLINES Int 4 Line number in the procedure.

LINE Char 80 Line being scanned.

-62-

APPENDIX B

SOURCE CODE INSTRUMENTATION%I
In ACAP, the source code is grouped into modules and procedures for

analysis. A procedure is the smallest named grouping of source code. A

module consists of multiple procedures. All of the metrics extracted by ACAP

are reported at the procedure and the module level.

Instrumentation is used to identify the procedures and modules in the

assembly language source code being analyzed. In addition, instrumentation

can be used to identify abstracts (or prologues) and to skip lines.

Instrumentation may also serve a useful side benefit as a mechanism by which

the analyst can tie a documented view of a software system's procedures to the

actual source code.

Five types of instrumentation are available to the user:

*** STPROCEDURE "module name" "procedure name"

*** STABSTRACT "module name" "procedure name"

* '* END ABSTRACT

*** ST SKIP
*** ENDSKIP

where *** is a user defined ASCII string of up to 15 characters in length (see

Section 3.1.2) chosen so as to not be a valid construct of the target

language. "Module Name" is a string identifying the module, "Procedure Name"

is a string identifying the procedure. These strings may vary in size
depending on the language to be analyzed, currently the M68000 and 6800

languages allow these strings to be 16 characters long.

-63-

-WW4 -,W -- % - - -T7 -.
7.

An exdmple of the use of instrumentation is as follows:

C** STABSTRACT MODl PROC1

* PROCI - SAMPLE ABSTRACT FOR PROCI

0
:c

0

0

C** END ABSTRACT

C** ST PROCEDURE MOD1 PROC1

START EQU *

LDA A VAR

0
0

o

END

C** ST SKIP

NAN 'SKIP ASSEMBLER DIRECTIVES'

OPT PAG

C** END SKIP
C* ST PROCEDURE MOD1 PROC2

0

0

0

This example defines an abstract preceding a procedure and skips some

lines of assembly'diretives at the end of the procedure.

8.1 PROCEDURE INSTRUMENTATION

The minimum instrumentation that a user of ACAP must utilize Is the

ST PROCEDURE line. ACAP recognizes this line as the start of a new procedure

and the end of the previous procedure (the first and last procedures in a file

are handled within their respective contexts). All comment lines between this
line and the first instruction in the procedure are, by default, reported as

belonging to the abstract unless the abstract instrumentation is used.

-64-.

B.2 ABSTRACT

Where appropriate, the user may override the default processing for

abstracts by utilizing the STABSTRACT and END ABSTRACT instrumentation lines.

These will cause ACAP to associate the user specified abstract to a specific

procedure. ACAP then reports the total number of lines in this user defined

abstract. In addition, any executable and non-executable statement lines

(i.e., non-couments) found within the abstract are reported in the ERROR.NML.

B.3 SKIP

The user may utilize the ST SKIP and ENDSKIP instrumentation lines

to Nskipo over code within a procedure. Skip instrumentation might be used to

avoid ambiguities arising from lines which are conditionally assembled. ACAP

reports the number of lines skipped during processing.

Note: ACAP will not handle the case where a subroutine is

instrumented within another instrumented routine. Therefore,

this practice should be avoided, the following is an example
of an illegal instrumentation:

C** ST PROCEDURE flO01 PROC1
START EQU *

LDA A VAR
0
0

C** ST PROCEDURE MOD1 PROC2
-SUB A 010
0
0
0

C** STPROCEDURE NMI~ PROCI,

o0
0

The occurrence of a "ST PROCEDURE* automatically ends the

collection of metrics for the previous procedure and the

previous procedure may not be repeated or added to.

.65-

APPENDIX C

MODIFICATIONS NECESSARY TO ADD A

LANGUAGE TO ACAP

C.1 DEVELOPMENT OF NEW SOFTWARE ROUTINES ,

In order to conform with the current design of ACAP the following P.

language specific programs need to be developed for each language:

1. Scanner: This program prepares lines of instrumented source

code for parsing and accumulates various procedure oriented

2. metrics.

2. Parser: This program breaks down an instrumented source line

into identifiable language independant tokens and, for

applications requiring Halsteads Analysis, collects operator and

operand information. In order to accomodate the identification

of tokens a "Parser Table" must be developed which contains

information about every instruction in the the target language.

3. Parser Table: This is a non-executable file with language

specific information stored in namelist format. Each Parser

Table must be identifiable by a unique name. At the time of

language selection the appropriate parser table is copied into a

file with the generic name OPARSER.TBL" and is used in various

programs until another language selection is made. See Appendix
D "ACAP Language Capabilities" for more specific information on

the parser tables.

The end result of the above programs is the file "TRNSL.FIL*. This

file contains generic information about the language being analyzed and is the

input to the static analyzer programs which are, and should remain, language

fndependant.

-66-

C.2 MODIFICATION OF EXISTING SOFTWARE ROUTINES

These changes are basically to add the new language to the menu's so

It can be selected by an operator.

1. ASMCHOICE.MEN, ACAPCAP.MEN: Both of these menu's need to have

the new language name added.

2. ASMCHOICE.CON: This program determines which "scanner" and

"Parser Table" are to be used in subsequent processing and puts

the source language name in the control file. Therefore this

program needs modification to add this information for any new

language.

-7

-.67-

APPENDIX D

ACAP LANGUAGE CAPABILITIES

0.1 6800

1. 6800 PARSER TABLE: The following describes the Parser Table

(P6800.TBL) used to analyze 6800 programs:

CHARACTER*15 INSTRUMENT VALUE
INTEGER N USER, N ASSN
INTEGER*4 AYSM C0DEf(200), ASSN NODES(200)
INTEGER*4 ASSN-SPECS(200), USER-COES(100)
INTEGER*4 USER-ODES(100), USER-SPECS(1O0)
INTEGER*4 -PARSER PRNT, COW1ENTPRNT, STRINGSPRNT,

INSTRUNPR T

NAMEL IST/PARSER TABLE/INSTRUMENT VALUE
* ,PARSER PRNT
* ,STRINGZ PRNT
* ,CONMENT-PRNT
* ,INSTRM FRNT
* ,N ASSK-
* ,ATSN INSTS
* ,ASSK-CODES
* ,ASSNHODES
* ,ASSW-SPECS
* ,N USER
* ,UER INSTS
* ,USER-CODES
* ,USER-ODES
* ,USER-SPECS

Where:

NASSN - Number of assembly language constructs defined in
ASSN INSTS that the parser is to recognize. These are
both instructions and assembler directives.

ASSNINSTS The actual assembly language mnemonics and assembler
directives. These can be up to eight characters.

ASSN CODE - Code assigned to each entry in ASSN INSTS which is used
by the Static Analyzer. The following codes have been
defined:

46-

j -jzr F.,] ..w , 3w r.11 ' . -i.7 1 -r L.8 M!F ' r- bl- u,
w

! -. -.r l' P -ir T ~ r:.rU*U

-1 = Undefined
1 - Modifies Argument
2 References Argument

3 a Tests Argument
4 - Performs Work
5 - Branches Conditionally
6 a Branches Unconditionally
7 - Calls Subroutine
8 - Returns From Subroutine
9 - Defines Argument

11 - Declares Variable
12 - Declares Constant
13 - Defines Constant
14 - Performs Non-Executable Work

ASM MODE Addressing mode or more specifically the number of
operands that can follow a particular instruction.
Basically, there are three modes:

0 - No Operands
1 - One Operands
2 - Two Operands

ASSMSPECS - Special information about an instruction (not used for
6800 language).

2. 6800 NON-APPLICABLE METRICS: Also contained in the "Parser

Table" is a namelist which contains any metrics which are

predetermined to be non-applicable. The format is as follows:

NAMELIST/INITMET/ N COMMENT LINES
,N LINES X

* ,N-LINES-

* ,N"COMMENTS X
* ,W-COW4ENTS-NX
* ,ICINLINE C3hIMENTS
* ,N PER COW4 X
* , N-PER-COM"-X -

' * ,l'X WU COIWENTS
* ,N STAMPS X
* ,-NSTANNTS'NX
* *IO..T LINE-STANNTS
* , MULTSTAMPr LINES
* ,NENTY PTS-
* N BRANCH FRWD
* ,N--RANCH-BACK
* ,N-RANCH-OUT
* ,N-bRANC-CtONO
* ,NRANCN"UNCOND
* , N-NO0ES
* ,1I_ ATHS

-49-.

MCCABES CYCLOMATIC
*N LINES-SKIPPED

* , 'INCLUDES
* , N-OPERATORS
* ,N-OPERATORS USED
* ,N-OPERANDS -
* ,N OPERANDS USED
* ,N-)RIM LINrS
* ,NM-EBEIT LINES
* ,N-SWITCIT

,N7VARS

* ,CO1E_COUNTS

This entry in the parser table should contain ONLY the metrics which

are not applicable. For the 6800 language the following are set to -1

Indicating non-applicability:

N COMMENTS X
N-COMMENTS-NX

* N-PER COrvfX
N-PER-COW4-NX
PULT DUE TAMNTS
MULTSTAMWrS LINES
N INCLUDES
N-OPERATORS
N-OPERATORS USED
N-OPERANDS
N-OPERANDS USED
N-PRIM LINES
NEMBEIF L I NE S

3. 6800 LANGUAGE ANALYSIS LIMI1TATIONS:

1. Halsteads parameters (number of unique operators, number of

operator occurrences, number of unique operands, and number

of operand occurrences) are not collected.

2. Variable usage data relating more to higher level language,

such as variable type and number of times a variable Is

passed as an argument, is not collected.

Table D-1 shows the content of the Parser Table for the 6800 language.

-70-

,.4

TABLE D-1

6800 PARSER TABLE

ASSN-INSTS ASSM-CODES ASSM-MODES Description

1 ABA 4 0 Add Accumul ators
2 ADC 2 2 Add With Carry
3 ADD 2 2 Add

4 AND 2 2 Logical And
5 ASL 4 1 Arithmetic Shift Left

6 ASR 4 1 Arithmetic Shift Right

7 BCC 5 1 Branch if Carry Clear

8 BCS 5 1 Branch if Carry Set
9 BEQ 5 1 Branch if Equal to Zero

10 BGE 5 1 Branch if Greater or Equal Zero
11 BGT 5 1 Branch if Greater Than Zero

12 BHI 5 1 Branch if Higher

13 BIT 2 2 Bit Test

14 BLE 5 1 Branch if Less or Equal

15 BLS 5 1 Branch if Lower or Same
16 BLT 5 1 Branch if Less Than Zero

17 BNI 5 1 Branch if Minus
18 BNE 5 1 Branch If Not Equal to Zero

19 BPL 5 1 Branch if Plus

20 BRA 6 1 Branch Always
21 BSR 7 1 Branch to Subroutine
22 BVC 5 1 Branch if Overflow Clear

23 BS 5 1 Branch If Overflow Set
24 CBA 4 0 Compare Accumulators
25 CLC 4 0 Clear Carry

26 CLI 4 0 Clear Interrupt Mask
27 CLR 1 1 Clear

28 CLV 4 0 Clear Overflow
29 CHP 2 2 Compare
30 CON 1 1 Complement

31 CPX 2 1 Compare Index Register

-71-

TABLE D-1 (Continued)

6800 PARSER TABLE

ASSM-INSTS ASSN-CODES ASSM-ODES Description

32 DAA 4 0 Decimal Adjust

33 DEC 1 1 Decrement

34 DES 4 0 Decrement Stack Pointer

35 DEX 4 0 Decrement Index Register

36 EOR 2 2 Exclusive OR

37 INC 1 1 Increment

38 INS 4 0 Increment Stack Pointer

39 INX 4 0 Increment Index Register

40 JMP 6 1 Jump

41 JSR 7 1 Jump to Subroutine

42 LDA 2 2 Load Accumulator

43 LOS 2 1 Load Stack Pointer
44 LOX 2 1 Load Index Register

45 LSR 4 1 Logical Shift Right
46 NEG 1 1 Negate

47 NOP 4 0 No Operation
48 ORA 2 2 OR Accumulators
49 PSH 4 1 Push Data

so PUL 4 1 Pull Data

51 ROL 4 1 Rotate Left

52 ROR 4 1 Rotate Right
53 RTI 8 0 Return From Interrupt

54 RTS 8 0 Return From Subroutine
55 SBA 4 0 Subtract Acumulators
56 SBC 2 2 Subtract With Carry

57 SEC 4 0 Set Carry

58 SEI 4 0 Set Interrupt Mask

59 SEV 4 0 Set Overflow

60 STA 1 2 Store Accumulator
61 STS 1 1 Store Stack Register

62 STX 1 1 Store Index Register

-72-

TABLE D-1 (Continued)

6800 PARSER TABLE

ASSN-INSTS ASSM-CODES ASS4-MODES Descri ption k

63 SUB 2 2 Subtract

64 SWI 4 0 Software Interrupt

65 TAB 4 0 Transfer Accumulators

66 TAP 4 0 Transfer Accumulator to

Condition Code Register

67 TBA 4 0 Transfer Accumulators

68 TPA 4 0 Transfer Condition Code Register

to Accumulator

69 TST 2 0 Test

70 TXS 4 0 Transfer Stack Pointer to Index

Register

71 TSX 4 0 Transfer Index Register to Stack

Pointer

72 WAI 4 0 Wait For Interrupt

73 END 14 1 Define end of Source Program

74 EQU 13 1 Equate Symbol to an Operand

75 FCB 12 1 Form Constant Byte

76 FCC 12 1 Form Constant Characters

77 FB 12 1 Form Double Constant Byte

78 NAN 14 1 Specify Nam of Title

79 OPT 14 1 Cortrol Assembler Options

80 ORG 14 1 Assign Origin of Program Counter

81 PAG 14 1 Skip to Next Page

82 RHB 11 1 Reserve Namory Bytes ..

83 SPC 14 1 Insert Space(s) In Output File

-73-

D.2 468000

1. PARSER TABLE: The following lscribes the parser table

(PM68000.TBL) used to analyze M68000 Programs: e

CHARACTER*8 DELOPER (16)
CHARACTER*15 INSTRUMENT VALUE
INTEGER N USER, N ASSM, N OPER
INTEGER*4 A3SM CODE"(200), SSM MOOES(200)
INTEGER*4 ASSN-SPECS(200), USER-CODES(100)
INTEGER*4 USER-hOOES(100), USER-SPECS(100)
INTEGER*4 PARS"R PRNT, COMMENT _9RNT, STRINGS PRNT,

INSTWUM PRNT

NAMEL IST/PARSER TABLE/I NSTRUMENT VALUE

* ,PARSER PRNT ,.* , ~STR INGf PRNT
* •~CONENT-PRNT

* • INSTRM ANT
* ,N ASSM-
* ,ASSM INSTS
* ,ASSM-CODES
* ,ASS0M1ODES
* ,ASSN-SPECS
* *N USUR
* URR INSTS
* •USEW-CODES
* • USER-HODES
* DELOIFER

,USER SPECS

Where:

NASSM, ASSN INSTS, ASSM_CODE and ASSM MODE are defined as

in the 6800 description.

ASSM SPECS -Special information about an instruction.

0 - No special information.
2 or 9 a Are ASSM CODES which will override the general case

.ASSN CODE associated with the particular instruction.

This will happen automatically when the parser detects

the instruction being used in a way that does not fit
the general, default, case preset In the ASSN MODES and

Ik

.S

USERINSTS, USERCODES, USERMODES and USERSPECS are used the sameIas the "ASSM* counterparts but for the user defined instructions such as
macros. These are generated dynamically.

DELOPER a Delimiting operators, those not included in the
"ASSM INSTS" or "USERINSTSN, such as arithmetic operators (used for
Halstead's calculations). ~ ~*

NOPER aNumber of operators in the NDELOPER" list.

2. M68000 NON-APPLICABLE METRICS: Also contained in the "Parser
Table* is a namelist which contains any metrics which are
predetermined to be non-applicable. The format is as follows:

NAMELIST/INITMET/ NCOMMENTLINES
A UNLNES X pii

* ,IF~tLINES1X -

*~9 NL INEs7
,N COMMENTSN04ET1X

* ,NINLINE CN1MENTS
* *N-ER CORM X
* ,NPERCOMM14
* ,WN Off COW'ENTS
* ,N sTAI4NTs x

p.'A ,NTAMNTS-14X
* *MULT LINE STANNTS

,MULTfTA4rTLINES
* ,:N EM~Y PTS7
*,N-BRANCIT FRWD
* *flRACH-BACK

JCNODES

*N ATHS
*ICCABES CCOAI

F-1,N LINESSKIPPED
,N INCLUDYES

* ,NIDPERATORS

:?COERAORSUSED

N-RMLINES

ICMO LINES

* .N VARS
* ,C DECOUNTS

This entry in the parser table should contain ONLY the metrics which
are not applicable. For the M68000 language the following are set to -1
indicating non-applicability:

N COMMENTSX
NrCOt4MENTs7NX
N7PER COMK4X
NPERhOM9NNX
MULTTfINE_STAMNTS
MULT STAMNTS LINES
N EID LINE3

* 3. M68000 LANGUAGE ANALYSIS LIMITATIONS:

Variable usage data relating more to higher level language,
such as variable type and number of time a variable is
passed as an arguwiret, is not collected.

Table D-2 show the content of the Parser Table for the M68000
language.

-76-

TABLE D-2

M68000 PARSER TABLE

ASSM-INSTS ASSM-ODES ASSN-CODES ASSM-SPECS Description

ABCD 2 4 0 Add Decimal With Extend

ADD 2 4 0 Add Btnary

ADDA 2 4 0 Add Address

ADDI 2 4 0 Add Immediate
ADDQ 2 4 0 Add Quick !
ADDX 2 4 0 Add Extended :

AND 2 4 0 AND Logical .,)

ANDI 2 4 0 ADD Imeid iate

ASL 2 4 0 Arithmetic Shift

ASR 2 4 0 Arathmetic Shift

BCC 1 5 0 Branch Conditionally

BCS 1 5 0 Branch Conditionally

BEQ 1 5 0 Branch Conditionally

BGE 1 5 0 Branch Conditionally

BHI 1 5 0 Branch Conditionally
BLE 1 5 0 Branch Conditionally

BL 1 5 0 Branch Conditionally

BLS 1 5 0 Branch Conditionally

BLT 1 5 0 Branch Conditionally

BT 1 5 0 Branch Conditionally
BNE 1 5 0 Branch Conditional ly

BPL 1 5 0 Branch Conditionally

BVC 1 5 0* Test a Bit
BVS 1 5 0 Test a Bit

BCHG 2 4 0 Test a Bit and Change
BCLR 2 4 0 Test a Bit and Clear
BRA 1 6 0 Branch Always
BSET 2 4 0 Test a Bit and Set

BSR 1 7 0 Branch to Subroutine
BTST 2 4 2 Test a Bit
CHK 2 5 0 Check Register Against Bounds

-77-

TABLE D-2 (Continued)

68000 PARSER TABLE

ASSM-INSTS ASSM-MODES ASSM-CODES ASSM-SPECS Description

CLR 2 4 9 Clear an Operand

CMP 2 4 0 Compare

CMPA 2 4 0 Compare Address

CMPI 2 4 2 Compare Immediate

CMPM 2 4 0 Compare Memory

DBCC 2 5 0 Test Condition, Decrement,

and Branch

DBCS 2 5 0

DBEQ 2 5 0
DBF 2 5 0

DBGE 2 5 0

DBGT 2 5 0

DBHI 2 5 0

DBLE 2 5 0
DBLS 2 5 0

DBLT 2 5 0

D81! 2 5 0
DBNE 2 5 0

DBPL 2 5 0
DBT 2 5 0
DBYC 2 5 0

DBYS 2 5 0
DOBRA 2 6 0

DIVS 2 4 0 Signed Divide

DIVU 2 4 0 Unsigned Divide

EOR 2 4 0 Exclusive OR Logical

EORI 2 4 0 Exclusive OR Immediate

EXG 2 4 0 Exchange Registers

EXT 1 4 0 Sign Extend

-78-

TABLE 0-2 (Continued)

M68000 PARSER TABLE

ASSM-INSTS ASSM-MODES ASSM-CODES ASSM-SPECS Description

JMP 1 6 0 Jump

JSR 1 7 0 Jump to Subroutine

LEA 2 4 0 Load Effective Address

LINK 2 4 0 Link and Allocate

LSL 2 4 0 Logical Shift

LSR 2 4 0 Logical Shift

MOVE 2 4 9 Move Data From Source To

Destination

MOVEA 2 4 U Move Address

MOVEM 2 4 9 Move Miltiple Registers

MOVEP 2 4 0 Move Peripheral Data

MOVEQ 2 4 0 Move Quick

MULS 2 4 0 Signed Multiply

MULU 2 4 0 Unsigned Mulitply
NBCD 1 1 0 Negate Decimal With Extend
NEG 1 1 0 Negate
NEGX 1 1 0 Negate With Extend

NOP 0 4 0 No Operation
NOT 1 1 0 Logical Complement
OR 2 4 9 Inclusive OR Logical

ORI 2 4 9 Inclusive OR Imediate
PEA 1 2 0 Push Effective Address

RESET 0 4 0 Reset External Devices

(Privileged Instruction)
ROL 2 4 0 Rotate (Without Extend)

ROR 2 4 0 Rotate (Without Extend)

ROXL 2 4 0 Rotate With Extend

ROXR 2 4 0 Rotate With Extend
RTE 0 8 0 Return From Exception

(Privileged Instruction)

RTR 0 8 0 Return and Restore Condition

Codes

-79-

I

TABLE 0-2 (Continued)

M68000 PARSER TABLE

ASSH-INSTS ASSM-MODES ASSN-CODES ASSN-SPECS Descripti on

RTS 0 .8 0 Return From Subroutine

SBCD 2 4 0 Subtract Decimal With Extend

SCC 1 9 0 Set According to Condition

SCS 1 9 0

SEQ 1 9 0

SF 1 9 0

SGE 1 9 0

SGT 1 9 0

SHI 1 9 0

SLE 1 9 0

SLS 1 9 0

SLT 1 9 0

SKI 1 9 0

SNE 1 9 0

SPI 1 9 0

ST 1 9 0,

SVC 1 9 0

SVS 1 9 0

STOP 1 4 0 Load Status Register and Stop

(Privileged Instruction)

SUB 2 4 0 Subtract Binary
SUBA 2 4 0 Subtract Address

SUBI 2 4 0 Subtract Iwmediate

SUBQ 2 4 0 Subtract Quick

SUBX 2 4 0 Subtract With Extendd

SWAP 1 4 0 Swap Register Halves

TAS 1 1 0 Test and Set an Operand

TRAP 1 6 0 Trap

TRAPV 0 S 0 Trap on Overflow

TST 1 4 0 Test an Operand

UNLK 1 4 0 Unlink

-80-

TABLE 0-2 (Continued)

M68000 PARSER TABLE

ASSM-INSTS ASSN-MODES ASSM-CODES ASSM-SPECS Description

END 1 14 0 Program End

EQU 1 13 0 Assign Permanent Value

INCLUDE 1 14 0 Include Second File

OFFSET 1 14 0 Defn e Offsets

ORG 1 14 0 Absolute Origin

SECTION 1 14 0 Relocatable Prog Section

REG 1 14 0 Define Register List

SET 1 11 0 Assign Temporary Value

INFEQ 2 14 0 Conditional Assembly Decision
IFNE 2 14 0 Conditional Assembly Decision
IFLT 2 14 0 Conditional Assembly Decision-

IFLE 2 14 0 Conditional Assembly Decision

IFLE 2 14 0 Conditional Assembly Decision

IFGT 2 14 0 Conditional Assembly Decision

IFGT 2 14 0 Conditional Assembly Decision

ENIG 0 14 0 End Conditional Assembly

COMLINE 1 12 0 Command Line

DC 1 13 0 Define Constants

DCB 2 13 0 Define Constant Block

DS 1 12 0 Define Storage

FAIL 1 14 0 Programer Generated Error

FORIAT 0 14 0 Enable Auto Formatting

NOFORMAT 0 14 0 Disable Auto Formatting

LIST 0 14 0 Enable Listing

NOL 0 14 0 Disable Listing

NOLIST 0 14 0 Disable Listing

LLEN 1 14 0 Set Line Lengths

NOOBJ 0 14 0 Disable Object Output

OPT 0 14 0 Assembler Options

PAGE 0 14 0 Top of Pae

NOPAGE 0 14 0 Disable Paging

SPC 1 14 0 Skip n Lines
.61-

TABLE D-2 (Continued)

M68000 PARSER TABLE

ASSM-INSTS ASSM-NODES ASSM-CODES ASSM-SPECS Description

TTL 1 14 0 Title

IDNT 0 14 0 Relocatable ID Record

XDEF 1 11 0 External Symbol Def

XREF 1 11 0 External Symbol Ref

IF 0 3 0 Structured Constructs

ELSE 0 3 0 Structured Constructs

ENDI 0 14 0 Structured Constructs

FOR 0 3 0 Structured Constructs

ENDF 0 14 0 Structured Constructs

REPEAT 0 14 0 Structured Constructs

UNTIL 0 3 0 Structured Constructs

WHILE 0 3 0 Structured Constructs

ENDW 0 14 0 Structured Constructs

-82-

D.3 SKC

1. PARSER TABLE: The following describes the parser table

(PSKC.TBL) used to analyze SKC Programs:

CHARACTER*8 DELOPER (16)
CHARACTER*15 INSTRUMENT VALUE
INTEGER N USER, N JSSM, N OPER
INTEGER*4 ATSM CODE(250), ISSM MODES(250)
INTEGER*4 ASSM-SPECS(250), USER'CODES (100)
INTEGER*4 USER-MODES (100), USER-SPECS(100)
INTEGER*1 PARSER PRNT, COMWENTPRNT, STRINGSPRNT,

INSTWiUM PRNT

NAMELIST/PARSERTABLE/I NSTRUMENTVALUE* ,PARSER PRNT
* .STRINGY PRNT

* ,COMIENT-PRNT
* ,INSTRM lFRNT
* .N ASSM-

* ,ASSM INSTS
:ASSN-CODES .4

,ASSI--MODES* ,ASSO-SPECS
* ,USE9-CODES
* ,USER-MOES
* ,USER-SPECS
* ,DELOPER
* *N OPER

Where:

NASSM, ASSN INSTS, ASSN CODE and ASSM MODE are defined as

in the 6800 description.

ASSM SPECS - Special information about an instruction (not used for

SKC). USERINSTS, USER CODES, USER MODES and USERSPECS are used the same as

the "ASSM" counterparts but for the user defined instructions such as macros.

These are generated dynamically.

DELOPER * Delimiting operators, those not included in the

"ASSMINSTSO or "USER INSTSO, such as arithmetic operators (used for

Halstead's calculations).

NOPER a Number of operators in the "DELOPERO list.

4-

2. SKC NON-APPLICABLE METRICS: Also contained in the "Parser

Table"M is a namelist which contains any metrics which are

predetermined to be non-applicable. The format is as follows:

NAMELIST/INITMET/ N C OMM ENT LINES
* ,N CINES X
* ,N1..INES-NX

*,N-COMMENTS X

* ,N-PER COW4 X
* ,N"ERCOM"~X
* ,f'(X WU COMMENTS
* .N STAMRNS X
* :N-STAMNTS14X
* ,MULT LINE STAMNTS
* ,MULT-STAM1W LINES
* N ENTRY PTS7
* N rBRANCH FRWD
*0 ,RANCH-BACK
* N-6RANC fUT
* , tNBRANCkFCOND
* D NCBRANCK-UNCOND
* ,tOEWODES-
* *N-PATHS
* ,ICCABES CYCLONATIC
*~ *NLINES-SKIPPED
* N rINCLU5ES
* * NOPERATORS
* , N"PERATORS USED
* *NOPERANDS
* ,N OPERANDS USED
* ,N"RIM LINES
* ,N EMBED LINES

* *fCSWITCJTf
* ,ICVARS
* *:C&E COUNTS

This entry in the parser table should contain ONLY the metrics which
are not applicable. For the SKC language the following are set to -1
indicating non-applicability:

N COMMENTS X
N COMMENTS7NX
"CER COMM-X
NPER9OCNX
niNCrUDEs7

DLT L INE STANNTS
-84-

MULT STAMNTS LINES
N EMBED LINES
NCSW ITCF

3. SKC LANGUAGE ANALYSIS LIMITATIONS:

a. Variable usage data relating more to higher level

language, such as variable type and number of time a

variable is passed as an argument, is not collected.

b. Metrics for lines which make up a Macro Definition are
not collected. However, Macro Definition and Usage
Information can be found in the Macro Report.

Table D-3 show the content of the Parser Table for the SKC language.

4--

-85

TABLE D-3

SKC PARSER TABLE

ASSN INSTS C 1 DESCRIPTION

ADD16 2 2 Add 16 bits.

AD032 2 2 Add 32 bits.

ADDR 2 2 Add general register.

ADF 2 2 Add floating.

AFD 2 2 Add floating DP.

AND16 2 2 Logical AND 16 bits.

AND32 2 2 Logical AND 32 bits.

CBIT 2 2 Compare bit in memory.

COM16 2 2 Compare 16 bits.

CO32 2 2 Compare 32 bits.

COMF 2 2 Compare floating.

COMFD 2 2 Compare floating DP.

OR 2 2 Compare general register.

DVD16 2 2 Divide 16 bits.

DVDX16 2 2 Divide extended precision 16 bits.

DVD32 2 2 Divide 32 bits.

DVDX32 2 2 Divide extended precision 32 bits.

DVF 2 2 Divide floating.

EXEC 2 1 Execute.

EX016 2 2 Exclusive OR 16 bits.

EX032 2 2 Exclusive OR 32 bits.

IDVF 2 2 Inverse divide floating.

ISBF 2 2 Inverse subtract floating.

ISFO 2 2 Inverse subtract floating DP.

LAE 4 1 Load AU with ffctlve address.

LD16 2 2 Load 16 bits.

LD32 2 2 Load 32 bits.

LD64 2 2 Load 64 bits.

LIRK 2 2 Load mask register (not available on SKC3121).

LDPUSH 2 2 Load 32 bits and push.

LOR 2 2 Load general register.

LM"R 2 2 Load mmory management RAN (not available on SKC31Z).

46-

TABLE 0-3 (Continued)

SKC PARSER TABLE

ASSM INSTS C M DESCRIPTION

MLF 2 2 Multiply floating.

MLFT 2 2 Multiply floating truncated.

MUL16 2 2 Multiply 16 bits.

MUL32 2 2 Multiply 32 bits.

MULR 2 2 Multiply general register.

0R16 2 2 Logical OR 16 bits.

0R32 2 2 Logical OR 32 bits.

RBIT 1 2 Reset bit in memory.

RDVF 2 2 Remainder divide floating.

RESTORE 2 2 Load block of registers.

RIDVF 2 2 Remainder inverse divide floating.

RTA 6 2 Return jump.

RTAP 6 2 Return from priority program interrupts (not

available on SKC 3121).

SAVE 9 2 Store block of registers.

SBF 2 2 Subtract floating.

SBIT 1 2 Set bit in memory.

SFD 2 2 Subtract floating.

ST16 9 2 Store 16 bits.

ST32 9 2 Store 32 bits.

ST64 9 2 Store 64 bits.

STPOP 9 2 Store 32 bits and pop.

STR 9 2 Store general register.
SUS16 2 2 Subtract 16 bits.

SUB32 2 2 Subtract 32 bits.

SUSR 2 2 Subtract general register.

TSIT 1 2 Toggle bit in memory.

ABS16 4 0 Absolute value - 16 bit.

A8S32 4 0 Absolute value - 32 bit.
ABSF 4 0 Absolute value - floating point.

ABSFD 2 2 Absolute value - floating point.

CFX 4 0 Convert floating to fixed point.
47..

TABLE D-3 (Continued)

SKC PARSER TABLE

ASSM INSTS C M DESCRIPTION

CL16 4 0 Clear 16 bits.

CL32 4 0 Clear 32 bits.

CL32F 4 0 Clear 32 bits floating.

CL64F 4 0 Clear 64 bits floating.

CLB 4 0 Clear B register.

CLR 4 1 Clear general register.

CXF 4 0 Convert fixed to floating point.
DPI 4 0 Disable program interrupts.

EPI 4 0 Enable program interrupts.

EPPI 4 0 Enable priority program interrupts.

EXAB 4 0 Exchange A and B register.

EXTDV 4 0 Use extended precision numerator in following divide.

HALT 4 0 Halt the CPU.

LRA 4 1 Load register from AU register.

LAR 4 1 Load AU register from general register.

NEG16 4 0 Negate (two's complement) 16 bits.

NEG32 4 0 Negate (two's complement) 32 bits.
NEGF 4 0 Negate floating point.

NEGFD 4 0 Negate floating point double precision.

NEGR 4 1 Negate (two's complement) general register.
NOT16 4 0 Not (one's complement) 16 bits.

NOT32 4 0 Not (one's complement) 32 bits.

SQRT 4 0 Square-root-floating point.

SQUARE 4 0 Square-floating point.

ADDRR 4 2 Add register to register.
ANDRR 4 2 Logical AND register with register.

CORR 4 2 Compare register with register.
DVORR 4 2 Divide register by register integer.
EXORR 4 2 Exclusive OR register with register.
EXRR 4 2 Exchange register with register.

LDRR 4 2 Load register to register.

LRPC 4 2 Load general register with PC.

-88-

TABLE D-3 (Continued)

SKC PARSER TABLE

ASSN INSTS C M DESCRIPTION

MULRR 4 2 Multiply register by register integer.

ORRR 4 2 Logical OR register with register.
SLCR 4 2 Shift left circular register.

SLLR 4 2 Shift left logical register.
SRAR 4 2 Shift right algebraic register.

SRLR 4 2 Shift right logical register.

SUBRR 4 2 Subtract register from register.

SLC 2 2 Shift left circular.

SLCD 2 2 Shift left circular double.

SLL 2 2 Shift left logical. d

SLLD 2 2 Shift right logical double.

SRAD 2 2 Shift right algebraic double.

SRC 2 2 Shift right circular.

SRCO 2 2 Shift right circular double.

SRLD 2 2 Shift right logical double.

INI 4 1 Input direct.

IN2 2 2 Input via memory.

OUTI 4 1 Output direct.

OUT2 2 2 Output via memory.

JEQ 5 2 Jump equal.

JGE 5 2 Jump greater than or equal.

JGT 5 2 Jump greater than.

JLE 5 2 Jump less than or equal.

JT 5 2 Jump less than.

JNE 5 2 Jump not equal.

JSA 7 2 Subroutine jump-absolute. 4

JSAI 7 2 Subroutine jump-absolute indirect.

JSAIR 7 2 Subroutine jump-absolute indirect relative.

JSR 7 2 Subroutine jump-relative.

JSRI 7 2 Subroutine jump-relative indirect.

JU 6 2 Jump unconditional.

JUA 6 2 Jump unconditional absolute.

-89-
,

TABLE D-3 (Continued)

SKC PARSER TABLE

ASSN INSTS C M DESCRIPTION

JUAI 6 2 Jump unconditional absolute indirect.

JUAIR 6 2 Jump unconditional absolute indirect relative.

JURI 6 2 Jump relative indirect.

AOFS 4 0 Add stack floating point.

COMFS 4 0 Compare stack floating point.

DVFS 4 0 Divide stack floating point.
IDVFS 4 0 Inverse divide stack floating point.

ISBFS 4 0 Inverse subract stack floating point.

MLFS 4 0 Multiply stack floating point.

POP 4 0 Pop the stack.

PUSH 4 0 Push the stack.

SBFS 4 0 Subtract stack floating point.

PROL 2 2 Fixed prologue.

PROLS 2 2 Fixed prologure and save.

PROLV 2 1 Variable prologue.

PROLVS 2 1 Variable prologue and save.

RETURN 8 0 Return from subroutine.

BMOVE 4 1 Block move.

TRAPX16 2 2 Trap 16 bits fixed point.

TRAPX32 2 2 Trap 32 bits fixed point.

TRAPF32 2 2 Trap 32 bits floating point.

TRAPF64 2 2 Trap 64 bits floating point.

DVFO 2 2 Divide floating DP.

IDVFO 2 2 Inverse divide floating OP.

MLFD 2 2 Multiply floating OP.

NOP 4 0 No operation.

ADRS 13 1 ADdReSs.

VFD 11 2 Variabl field definition.

ASCII 12 1 ASCII characters.

ASCIIP 12 1 ASCII characters.

EQU 13 1 EQUate.

SETO 13 1 Define SET symbol-Decimal.
-911D-'

TABLE 0-3 (Continued)

SKC PARSER TABLE

ASSM INSTS C M DESCRIPTION E
SETX 13 1 Define SET symbol-heX.

BIT 13 2 Define BIT symbol.

BASE 14 1 Activate BASE register.

DBASE 14 1 Deactivate BASE register.

UBASE 14 1 Unconditional BASE register.

ENTRY 14 1 ENTRY point list.

GDATA 14 0 Global DATA list.

MAIN 14 0 MAIN deck.

END 14 0 END of deck.

INT 14 0 INTerrupt deck.

LIST 14 0 Source LISTing.

USE 14 1 USE location counter.

ORG 14 0 Absolute ORiGin.

EVEN 14 0 EVEN location.

COMMON 14 0 COMMON data region.

BSTACK 11 1 Block STACK.

DEC16 13 1 DECimal data (16 bits).

DEC32 13 1 DECimal data (32 bits).

DEC64 13 1 DECimal data (64 bits).

HEX16 13 1 HEXadecimal data (16 bits).

HEX32 13 1 HEXadecimal data (32 bits).

HEX64 13 1 HEXadecimal data (64 bits).

SCLS16 13 2 SCaLed Binary data (16 bits).

SCLB32 13 2 SCaLed Binary data (32 bits).

SCLW16 13 2 SCaLed Weighted data (16 bits).

SCLW32 13 2 SCaLed Weighted data (32 bits).

8SS 11 1 Block Started by Symbol.

BES 11 1 Block Ended by Symbol.

UNLIST 14 0 UNdo source.

TTL 14 0 TITLe.

EJECT 14 0 EJECT rest of page.

SPACE 14 0 SPACE by d lines.

-91-

0,.

TABLE D-3 (Continued)

SKC PARSER TABLE

*ASSM INSTS C M DESCRIPTION

CSB 14 0 Compool Symbols Begin.

CPOOL 14 1 Declare ComPOOL symbol.

CSE 14 0 Compool Symbols End.
PTR16 2 2 PoinTeR 16.
PTR32 2 2 PoinTeR 32.

PTR64 2 2 PoinTeR 64.

SBITH 1 2 Set BIT Marco.

RBITM 1 2 Reset BIT Marco.

TBITh 1 2 Toggle BIT Marco.

CBITM 2 2 Compare BIT Macro.

JBITI 5 2 Jump if BIT is 1.

JBITO 5 2 Jump if BIT is 0.

AT! 14 0 Memory Access Time of Instruction.

ATO 14 0 Memory Access Time of Operand.

ATIME Execution Timing weight.

*CTI 14 0 Memory Cycle Time of Instruction.
CTO 14 0 Memory Cycle Time of Operand.

D.4 PDP11

1. PARSER TABLE: The following describes the parser table

(PDP11.TBL) used to analyze PDP11 Programs:

CHARACTER*8 DELOPER (16)
CHARACTER*15 INSTRUMENT-VALUE
INTEGER N USER, N ASSM, N OPER
INTEGER*4 ATSM CODET(200), XSSM MODES(200)
INTEGER*4 ASSN-SPECS(200), USER-CODES(1O0)
INTEGER*4 USER-hOFRD(100), USER-SPECS(100)
INTEGER*4 PARSER PRNT, COMMENT INT, STRINGS PRNT,

INSTI JM PRNT

NAMEL I ST/PARSER TABLE/I NSTRUMENT VALUE
* .PARSER PRNT
* ,STRING§ PRNT
* ,COMMENT-PRNT
* ,INSTRD ANT
* ,N ASS-
* ,AMS _INSTS
* *ASSN CODES
* ,ASSM-ODES
* ,ASSN-SPECS
* ,N USlh
* ,UER INSTS
* ,USER CODES
* ,USER-ODES
* ,DELO'ER
* ,USERSPECS

Where:

NASSM, ASSN.INSTS, ASSM CODE and ASSM MODE are defined as

in the 6800 description.

USERINSTS, USER CODES, and USER MODES are used the same as the

"ASSM" counterparts but for the user defined instructions such as macros.

These are generated dynamically.

DELOPER D Delimiting operators, those not included in the

NASSMINSTSO or NUSERINSTS", such as arithmetic operators (used for

Halstead's calculations).

,-93-.

N OPER - Number of operators in the "DELOPER" list.

2. POP11 NON-APPLICABLE METRICS: Also contained in the "Parser

* Table" is a namelist which contains any metrics which are

predetermined to be non-applicable. The format is as follows:

NAMELIST/INITMET/ N COMMENT LINES* ,~N r'INES X-
* ,N-LINES-NX
* ,N-LINES7

* COMMENTS X
N NCOM4MENTS-NX

-*: ,NFINLINE CO14lENTS
,N-PER CORN X

* N-PER-CO#-N X
* ,IMrKX WU COWENTS
* ,N STANIS x
* ,I-STAMNTS-NX

*~~ ,IT L INESTAMqNTS
* ,NULT'-TANlYT LIKES

* ,N ENMhY PTS-
* bN-bRANC1I FRED
S*N-BRANCH-BACK

* , If-bRANCn-OUT
* , N-BRANCW-COND
* ,N-bRANCH-UNCOND

* ",~CCABES CYCLOMATIC
* ,N LINES-SKIPPED
* N INCLUDES
* ,N-OPERATORS
* ,N-OPERATORS USED

* ,If"OPERANDS -
* ,I-OPERANDS USED
* ,f"NRIN LINEs
* , NBE LINES

,N-VARS
* ,C ECOUNTS

This entry in the parser table should contain ONLY the mtrics which

are not applicable. For the PDP11 language the following are set to -1

indicating non-applicability:

N COPENTS X
N-cImENTSNX- II'I ~W-KR C~m' a WX"* ,!

• ' , ,Q • °3-UrCX.
• " .. , . ,-. '.:. .

,.4....4 - .,

N PER COMM NX
MULT LINE TTAMNTS
MULr$TAWTS LINES
N E14ED LINET
N-SWITCRT

3. PDPI1 LANGUAGE ANALYSIS LIMITATIONS: Variable usage data

relating more to higher level language, such as variable type

and number of time a variable is passed as an argument, is not

collected.

Data on nested macro definitions is not collected. Table 0-4 shows

the content of the Parser Table for the POP11 language.

a."-,

m

TABLE D-4

PDP11 PARSER TABLE

ASSM-INSTS ASSM-MODES ASSM-CODES Description

ADC 4 1 Add Carry

ADCB 4 1 Add Carry (Byte)
ADD 4 2 Add Source to Destination

ASH 4 2 Shift Arithmetically

ASHC 4 2 Arlthmethlc Shift Combined
ASL 4 1 Arithmetic Shift Left

ASLB 4 1 Arithmetic Shift Left (Byte)
ASR 4 1 Arithmetic Shift Right

ASRB 4 1 Arithmetic Shift Right (Byte)

BCC 5 1 Branch if Carry is Clear
BCS 5 1 Branch if*Carry is Set
BEQ 5 1 Branch if Equal

BHE 5 1 Branch if Greater Than or Equal
BGT 5 1 Branch if Greater Than
BHI 5 1 Branch if Higher

BHIS 5 1 Branch if Higher or Same

BIC 4 2 Bit Clear

BICB 4 2 Bit Clear (Byte)

BIS 4 2 Bit Set

BISB 4 2 Bit Set (Byte)

BIT 3 2 Bit Test

BITB 3 2 Bit Test (Byte)

BLE 5 1 Branch if Less Than or Equal

BLO 5 1 Branch If Lower
BLOS 5 1 Branch if Lower or Sme
BLT 5 1 Branch if Less Than

BMI 5 1 Branch if Minus

BNE 5 1 Branch if Not Equal

BPL 5 1 Branch if Plus

BPT 6 0 Breakpoint Trap

BR 6 1 Branch Unconditional

BYe 5 1 Branch if Overflow is Clear-96.

,6,4

TABLE D-4 (Continued)

PDPIl PARSER TABLE

ASSM-INSTS ASSN-MODES ASSM-CODES Description

BVS 5 1 Branch is Overflow is Set

CALL 7 1 Jump to Subroutine (JSR PC, xxx)

CCC 4 0 Clear All Condition Codes

CLC 4 0 Clear C Condition Code Bit

CLN 4 0 Clear N Condition Code Bit

CLR 4 1 Clear Destination

CLRB 4 1 Clear Destination (Byte)

CLV 4 0 Clear V Condition Code Bit

CLZ 4 0 Clear Z Condition Code Bit

CMP 3 2 Compare Source to Destination
CHPB 3 1 Complement Destination
CONP 4 1 Complement Destination
COme 4 1 Complement Destination (Byte)
DEC 4 1 Decrement Destination

DECE 1 1 Decrement Destination (Byte)

DIV 4 2 Divide

ENT 6 0 Emulator Trap

FADD 4 2 Floating Add

FDIV 4 2 Floating Divide

FMUL 4 2 Floating Multiply
FSUB 4 2 Floating Subtract

HALT 4 0 Halt

INC 1 1 Increment Destination

INCB I I Increment Destination (Byte)
IOT 6 0 Input/Output Trap

JMP 6 1 Jump

JSR 7 2 Jump to Subroutine

MARK 4 1 Mark
MFPI 4 1 Move From Previous Instruction Space
MFPS 4 1 Move From PS (LSI-11)

NOV 4 2 Move Source to Destination
mOve 4 2 Nove Source to Destination (byte)

-9-..

TABLE D-4 (Continued)

POPl PARSER TABLE

ASSM-INSTS ASSM-MOOES ASSM-CODES Description

MTPI 4 1 Move to Previous Instruction Space

MTPS 4 1 Move to PS(LSI-11)

MUL 4 2 Multiply

NEG 1 1 Negate Destination

NEGB 1 1 Negate Destination (Byte)

NOP 4 1 No Operation

RESET 4 0 Reset External Bus

RETURN 8 0 Return From Subroutine (RTS PC)

ROL 4 1 Rotate Left

ROLB 4 1 Rotate Left (Byte)

ROR 4 1 Rotate Right

RORB 4 1 Rotate Right (Byte)

RTI 8 0 Return From Interrupt (Permits a Trace

Trap)

RTS 8 1 Return From Subroutine
RTT 8 0 Return From Interrupt (Inhibits Trace

Trap)

SBC 4 1 Subtract Carry

SBCB 4 1 Subtract Carry (Byte)

SCC 1 0 Set All Condition Code Bits

SEC 1 0 Set C Condition Code Bit

SEN 1 0 Set N Condition Code Bit

SEV 1 0 Set V Condition Code Bit

SEZ 1 0 Set Z Condition Code Bit

SOB 5 2 Subtract One And Branch

SUB 4 2 Subtract Source From Destination

SWAB 4 1 Swap Bytes
SXT 4 1 Sign Extend

TRAP 6 1 Trap

TST 3 1 Test Destination

TSTB 3 1 Test Destination (Byte)

MAIT 4 0 Wait For Interrupt

-9B-

TABLE D-4 (Continued)

PDP1I PARSER TABLE

ASSM-INSTS ASSM-MODES ASSM-CODES Description

XOR 4 2 Exclusive OR

.ASCII 14 0 Translates character string to ASCII
equivlents.

.ASCIZ 14 0 Translates character string to ASCII
equivalents; inserts zero byte as last
character.

.ASECT 14 0 Begins absolute program section (provided
for compatibility with other POP11
assembl iers).

.BLKB 14 0 Reserves byte block in accordance with
value of specified argument.

.BLKW 14 0 Reserves word block in accordance with
value of specified argument.

.BYTE 14 0 Generates successive byte data in
accordance with specified arguments.

.CSECT 14 0 Begins relocatable program section
(provided for compatibility with other
POP1! assemblers).

.DSABL 14 0 Disables spelfied function.

.ENABL 14 0 Enables specified function.

.END 14 0 Defines logical end of source program.

.ENOC 14 0 Defines end of conditional assembly block.

.ENDR 14 0 Defines end of current repeat block
(provided for compatibility with other
POP11 assemblers).

.EOT 14 0 Define End of Tap Condition (ignored).

.ERROR 14 0 Outputs diagnostic message to listing
filo or command output device.

.FLT2 14 0 Causes two words of storage to be
generated for each floating-point
argument.

W99-

TABLE 0-4 (Continued)

PDPil PARSER TABLE

ASS-INSTS ASSN-MOOES ASSM-CODES Description

.FLT4 Causes four words of storage to be
generated for each floating-point
argument.

.GLOBL 14 0 Declares global attribute for specified
symbol(s).

IDENT 14 0 Labels object module with specified
program version number.

•IF 14 0 Begins conditional assembly block.

.IFF 14 0 Begins subconditional assembly block (if
conditional assembly block test is false).

.IFT 14 0 Begins subconditional assembly block (if
conditional assembly block test is true).

.IFTF 14 0 Begins subconditional assembly block
(whether conditional assembly block test
is true or false).

.IIF 14 0 Assembles immediate conditional assembly
statement (if specified condition is
satisfied).

.IRP 14 0 Begins indefinite repeat block; replaces
specified symbol with specified
successive real arguments.

.IRPC 14 0 Begins indefinite repear block; replaces
specified symbol with value of successive
characters in specified string.

.LINIT 14 0 Reserves two words of storage for high
and low addresses of task image.

•LIST 14 0 Controls listing level count and format
of assembly listing. NACRO denotes start
of macro definition.

."CALL 14 0 Identifies required macro definition(s)
for assembly.

,MEXIT 14 0 Exit from current macro definition or
indefinite repeat block.

.10)-

TABLE 0-4 (Continued)

PDP11 PARSER TABLE

ASSN-INSTS ASSN-MOOES ASSN-CODES Description

.NARG 14 0 Equates specified symbol to the number of
arguments in the macro expansion.

.NCHR 14 0 Equates specified symbol to the number of
characters in the specified character
string.

.NLIST 14 0 Controls listing level count and
suppresses specified portions of the
assembly listing.

.NTYPE 14 0 Equates specified symbols to the
addressing mode of the specified argument.

.ODD 14 0 Byte-aligns the current location counter.

.PAGE 14 0 Advances form to top of next page.

.PRINT 14 0 Prints specified message on command
output deivce.

.PSECT 14 0 Begins specified program section having
spec fed attributes.

.RADIX 14 0 Changes current program radix to
specified radix.

.RADSO 14 0 Generates data block having Radix-50
equivalents of specified character string.

.REPT 14 0 Begns repeat block and replicates It
according to the value of the specjfied
expression.

.SBTTL 14 0 Prints specified subtitle text as the
second line of the assembly listing page
header.

.TITLE 14 0 Prints specified title text as object
module name in the first line of the
assembly listing page heder.

.WORD 14 0 Generats successive wod data in
accordance with specified Vrgmnts.

.EVEN 14 0 Word-aligns the current loution cuter.

4.

(THIS PAGE INTENTIONALLY BLANK)

102

~a

--I

'I

'Vt.-' I.

~b'
I t

-~
N

-,
. I-,I

a.

ill

r

FILMED .>

A,

2

-. 7.

I - -'S

I,
I.

ft
III'I T IC .4I

I,,

V.

.1 . ii~
.

I

* -.

sb

.4 1 .I~I ~

